Self-Interacting Discrete Models
自交互离散模型
基本信息
- 批准号:RGPIN-2020-06124
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal consist of mathematical research in three rather different areas, ranging from the pure to the applied. (1) I will examine mathematical models of polymer molecules. Polymers are very large molecules made of many smaller units called monomers, perhaps many thousands of identical monomers in one polymer molecule. Examples include polyethylene, DNA, and proteins. Physicists and chemists have developed many mathematical models to help explain and predict the (frequently surprising) physical properties of polymers. However these models are difficult to analyze, both theoretically and computationally. My goal is to improve the rigorous mathematical understanding of these models by focusing on aspects of certain discrete models, in which the polymer's flexible shape must follow the lines in a three-dimensional grid. Mathematical confirmation of physical predictions can lead to improved confidence in the broader inferences from these models. (2) A permutation is simply a rearrangement of a set of numbers or objects. Permutations arise wherever symmetry plays a role: in physics, computer science, bioinformatics, and almost all areas of mathematics. I will look at permutations with certain restrictions called "pattern avoidance". It turns out that imposing pattern avoidance greatly constrains the set of valid permutations of a (large) set of objects, and the permutations satisfying such a restriction turn out to have surprising structures that can be observed visually on a simple scatterplot. My goal is to develop methods for characterizing and rigorously analyzing properties of these structures, particularly those that hold for most (but maybe not all) members of a given collection of pattern-avoiding permutations. This is mainly a project in theoretical combinatorics with a probability angle, and whose main applications are within pure mathematics itself. (3) Mathematical modelling of disease has become a crucial part of public health. For example, when faced with a limited amount of flu vaccine, is it better to focus efforts on children or on the elderly? Can we predict the peak demand on hospital resources for a coming flu season? Which vaccines will produce enough benefit to merit a government paying for them? I will investigate mathematical properties of a class of models for the spread of an infectious disease that has randomness explicitly in the model. Specifically, each infected person will infect a random number of other people, and each person lives for a random length of time. Most models for large populations are essentially deterministic, or else have unrealistic simplifying assumptions about individual lifetimes. I am particularly interested in mathematically analyzing models with realistic probabilities for lengths of lifetimes. Simulations can tell us some things about specific models, but mathematics can find deeper patterns that hold even for models that have not yet been simulated.
这个建议包括三个不同领域的数学研究,从纯数学到应用数学。(1)我将研究聚合物分子的数学模型。聚合物是由许多称为单体的较小单元组成的非常大的分子,一个聚合物分子中可能有数千个相同的单体。例如聚乙烯,DNA,物理学家和化学家已经开发了许多数学模型来帮助解释和预测然而,这些模型难以分析,我的目标是通过关注某些离散模型的各个方面来提高对这些模型的严格数学理解,其中聚合物的柔性形状必须遵循三条线,物理预测的数学确认可以导致对来自这些模型的更广泛的推断的置信度的提高。(2)置换是一组数字或对象的简单重新排列。置换出现在对称性发挥作用的地方:在物理学、计算机科学、生物信息学和几乎所有的数学领域。我将研究具有某些限制的排列,称为“模式避免”。事实证明,强加模式避免极大地限制了(大)对象集合的有效排列集合,满足这种限制的排列结果是具有令人惊讶的结构,可以在简单的散点图上直观地观察到。我的目标是开发用于表征和严格分析这些结构的性质的方法,特别是那些对大多数人来说(但可能不是所有)给定模式集合的成员-避免排列。这主要是一个具有概率角度的理论组合学项目,其主要应用是纯数学本身。(3)疾病的数学模型已经成为公共卫生的一个重要组成部分。例如,当面临有限数量的流感疫苗时,集中精力在儿童还是老年人身上更好? 我们能预测即将到来的流感季节对医院资源的高峰需求吗? 哪种疫苗会产生足够的好处,值得政府为它们买单? 我将研究一类传染病传播模型的数学性质,这些模型在模型中具有显式的随机性。具体来说,每个感染者将感染随机数量的其他人,每个人的寿命是随机的。大多数大人口模型本质上是确定性的,或者对个人的寿命有不切实际的简化假设。我特别感兴趣的是用数学方法分析模型,这些模型具有寿命长度的现实概率。模拟可以告诉我们一些关于数学可以找到更深层次的模式,甚至适用于尚未模拟的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madras, Neal其他文献
Madras, Neal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madras, Neal', 18)}}的其他基金
Self-Interacting Discrete Models
自交互离散模型
- 批准号:
RGPIN-2020-06124 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Self-Interacting Discrete Models
自交互离散模型
- 批准号:
RGPIN-2020-06124 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Systems: Theory and Models
随机系统:理论和模型
- 批准号:
RGPIN-2015-05909 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Systems: Theory and Models
随机系统:理论和模型
- 批准号:
RGPIN-2015-05909 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Systems: Theory and Models
随机系统:理论和模型
- 批准号:
RGPIN-2015-05909 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Systems: Theory and Models
随机系统:理论和模型
- 批准号:
RGPIN-2015-05909 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Systems: Theory and Models
随机系统:理论和模型
- 批准号:
RGPIN-2015-05909 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topics in Applied Probability and Combinatorics
应用概率和组合学主题
- 批准号:
156885-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topics in Applied Probability and Combinatorics
应用概率和组合学主题
- 批准号:
156885-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topics in Applied Probability and Combinatorics
应用概率和组合学主题
- 批准号:
156885-2009 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于血浆外泌体中piwi-interacting RNA和microRNA原位检测的乳腺癌液体活检方法研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
杨树光敏色素互作因子4 (Phytochrome Interacting Factor 4, PIF4) 调控植物生长与季节性休眠的分子机理研究
- 批准号:31800561
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
受体相互作用蛋白3(Receptor-interacting protein 3,RIP3)调控神经元缺血性程序性坏死的作用及机制研究
- 批准号:81271272
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
拟南芥DIF(DRIP1-Interacting Factor)在胁迫信号应答中的功能分析
- 批准号:31200202
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Fellowship
Making Strongly Interacting Photons
产生强相互作用的光子
- 批准号:
DP240100248 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Projects
Interacting ice Sheet and Ocean Tipping - Indicators, Processes, Impacts and Challenges (ISOTIPIC)
冰盖和海洋倾覆的相互作用 - 指标、过程、影响和挑战 (ISOTIPIC)
- 批准号:
NE/Z503344/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Fellowship
The interacting brain: defining the role of dynamism among canonical brain networks during interactive behaviour
交互大脑:定义交互行为过程中典型大脑网络动态的作用
- 批准号:
BB/X017095/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Research Grant