Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
基本信息
- 批准号:RGPIN-2020-06109
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decades, technological advances in imaging assisted the scientific community for linking functions to structures inside the brain. Neuroimaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have revolutionized our understanding of the brain. These tools have been used to study, among other investigations, brain metabolism and neurodegenerative diseases. Despite the ubiquitous use of MRI and PET imaging in neuroscience, these techniques are not well suited when it comes to study the brain structure at a micrometer scale. In the field of neurophotonics, a tool that meets this increasing resolution requirement is serial blockface histology (SBH). This technology combines a tissue slicing apparatus with an optical microscope. The sample is sequentially sliced to reveal new tissue layers that are imaged with the microscope. The process is repeated until the whole sample has been imaged. Then, through advanced registration methods, the thousands of image tiles acquired are assembled into a single 3D volume. SBH was an essential component of many high-profile neuroscience projects mapping genome-wide gene expression and for obtaining a micrometre scale connectome in a whole mouse brain. One of the main challenges is that SBH generates a tremendous amount of data for every brain. For example, to acquire an entire mouse brain with a 40X objective offering sampling resolution of 1 µm would require an estimated acquisition time of 60 days with current SBH systems and would necessitate around 700 Terabytes (TB) of disk space to store the raw dataset. This represents a challenge for data management, reconstruction, and the analysis methods. Future applications in this neurophotonics field will increasingly require a closer synergy between imaging and machine learning. My Discovery research program has two objectives: (1) to accelerate image acquisition and reconstruction by integrating the microscope with advanced computer vision methods, and (2) to analyze the large amount of data generated by such imaging systems with machine learning based methods. The projects proposed in this research program aim to create an augmented serial blockface histology system by integrating the microscopy with novel computer vision methods, image processing and machine learning techniques. This will make this imaging technique faster, smarter and more reproducible. This will open the way to democratization of SBH and is a necessary step toward the broader adoption of this technology by the biomedical research and clinical communities.
在过去的几十年里,成像技术的进步帮助科学界将功能与大脑内部结构联系起来。神经成像方式,如磁共振成像(MRI)和正电子发射断层扫描(PET)已经彻底改变了我们对大脑的理解。在其他研究中,这些工具已用于研究脑代谢和神经退行性疾病。尽管核磁共振成像和PET成像在神经科学中广泛使用,但这些技术并不适合在微米尺度上研究大脑结构。在神经光子学领域,满足这种日益增长的分辨率要求的工具是连续块面组织学(SBH)。该技术将组织切片设备与光学显微镜相结合。样品被依次切片,以显示新的组织层,用显微镜成像。重复这个过程,直到整个样品被成像。然后,通过高级配准方法,将获得的数千个图像块组装成单个3D体。SBH是许多备受瞩目的神经科学项目的重要组成部分,这些项目绘制全基因组基因表达,并在整个小鼠大脑中获得微米级的连接组。其中一个主要的挑战是,SBH会为每个大脑产生大量的数据。例如,使用目前的SBH系统,以40倍物镜获取一个完整的小鼠大脑,采样分辨率为1µm,估计需要60天的采集时间,并且需要大约700 TB的磁盘空间来存储原始数据集。这对数据管理、重建和分析方法提出了挑战。未来在神经光子学领域的应用将越来越需要成像和机器学习之间更紧密的协同作用。我的Discovery研究项目有两个目标:(1)通过将显微镜与先进的计算机视觉方法相结合来加速图像采集和重建,(2)使用基于机器学习的方法来分析这些成像系统产生的大量数据。本研究计划提出的项目旨在通过将显微镜与新颖的计算机视觉方法、图像处理和机器学习技术相结合,创建一个增强的连续黑脸组织学系统。这将使这种成像技术更快、更智能、更可复制。这将为SBH的民主化开辟道路,是生物医学研究和临床社区更广泛采用这项技术的必要步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lefebvre, Joël其他文献
Lefebvre, Joël的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lefebvre, Joël', 18)}}的其他基金
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
RGPIN-2020-06109 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
- 批准号:
DGECR-2020-00301 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Étude de la dynamique neurovasculaire microscopique à l'aide de modèles biophysiques
微观神经血管动态研究和生物物理学模型辅助
- 批准号:
424919-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Biophysical model investigation of brain metabolism and hemodynamics during micro-strokes using optical microscopy
使用光学显微镜研究微中风期间脑代谢和血流动力学的生物物理模型
- 批准号:
434745-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Modélisation du transport de l'oxygène dans le tissu cérébral
大脑组织中氧气运输的模块化
- 批准号:
414346-2011 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Vérification des traitements d'IMRT par les dynalogs
动态调强放疗 (IMRT) 特征验证
- 批准号:
400053-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
拟遗传 Nakayama 代数的研究
- 批准号:10826074
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
- 批准号:
10829717 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
- 批准号:
10817321 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Monitoring Immunotherapy Response via Gene Silencing Landscapes in Cell-Free DNA
通过游离 DNA 中的基因沉默景观监测免疫治疗反应
- 批准号:
10760450 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
IBIS-iPSC: Organoid modeling of cortical surface area hyperexpansion in autism spectrum disorder
IBIS-iPSC:自闭症谱系障碍皮质表面积过度扩张的类器官建模
- 批准号:
10656866 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Orthogonal split luciferases for imaging multiplexed cellular behaviors
用于多重细胞行为成像的正交分裂荧光素酶
- 批准号:
10730660 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:














{{item.name}}会员




