Image acquisition and analysis tools for magnetic resonance imaging near brain injury

用于脑损伤附近磁共振成像的图像采集和分析工具

基本信息

  • 批准号:
    RGPIN-2020-06005
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In patients who have had surgery or brain injuries there may be distortions or artifacts in the magnetic resonance imaging (MRI) data acquired in the region surrounding the injury. In MRI, radio frequency electromagnetic pulses are used to excite a signal from the sample and electromagnetic field gradient pulses, switched at kilohertz frequencies are used to tell us where in the sample that signal is coming from - allowing the creation of an image. Combined, these two forms of electromagnetic pulses create tools called pulse sequences. After the acquisition of MRI data, a detailed image can be reconstructed. Novel pulse sequences can be created to minimize artifacts and extract unique information from the sample. After data acquisition, it is possible to develop models and image processing tools which combine the information obtained by multiple pulse sequences to extract features and isolate structures not visible in the data obtained from a single imaging sequence. This program focuses two areas of MR physics research 1) Investigating and developing pulse sequences which are capable of minimizing artifacts and distortions; and 2) Developing and testing image-analysis tools which may aid in the visualization of regions of the brain that are typically difficult to analyze. Pulse Sequence: My research aims to investigate new pulse sequence designs which can minimize technical challenges and facilitate improved MRI in environments typically corrupted by artifacts. The goal of this work is to address imaging limitations through the development of new pulse sequences that couple accelerated data collection strategies, which allow us to acquire from multiple regions of the sample simultaneously, and optimized signal excitation and acquisition strategies, which allow us to minimize delay-induced image distortions. Image processing methodology: Most structural segmentation tools rely on existing brain atlases as well as imaging sequences whose contrasts may be changed by the presence of unexpected materials. We will create tools which improve segmentation and are capable of combining information from different MRI sequences, including novel ones under development. We will carefully question and test our models and results to reduce or eliminate bias and use the results of our analysis to inform pulse sequence design. Through this work I intend to train a diverse group of graduate and undergraduate students. I will leverage my experience in science outreach to supplement passive and departmental recruitment by actively encourage candidates from a range of backgrounds. The ability to effectively evaluate samples which are traditionally difficult to image due to artifacts will extend the utility of this powerful tool to include patients who would otherwise be unable to access informative MRI exams.
在接受过手术或脑损伤的患者中,在损伤周围区域采集的磁共振成像(MRI)数据中可能存在失真或伪影。在MRI中,射频电磁脉冲用于从样品中激发信号,电磁场梯度脉冲以千赫兹频率切换,用于告诉我们信号来自样品中的何处-允许创建图像。结合起来,这两种形式的电磁脉冲创造了称为脉冲序列的工具。在采集MRI数据之后,可以重建详细的图像。可以创建新的脉冲序列以最小化伪影并从样品中提取独特的信息。在数据采集之后,可以开发模型和图像处理工具,其将通过多个脉冲序列获得的信息进行联合收割机组合,以提取特征并隔离在从单个成像序列获得的数据中不可见的结构。 该计划侧重于MR物理研究的两个领域1)调查和开发能够最大限度地减少伪影和失真的脉冲序列; 2)开发和测试图像分析工具,这可能有助于通常难以分析的大脑区域的可视化。脉冲序列:我的研究旨在研究新的脉冲序列设计,这些设计可以最大限度地减少技术挑战,并促进在通常被伪影破坏的环境中改进MRI。这项工作的目标是通过开发新的脉冲序列来解决成像限制,该脉冲序列耦合了加速数据收集策略,使我们能够同时从样本的多个区域采集,并优化了信号激励和采集策略,使我们能够最大限度地减少延迟引起的图像失真。图像处理方法:大多数结构分割工具依赖于现有的大脑图谱以及成像序列,其对比度可能会因意外材料的存在而改变。我们将创建改进分割的工具,并能够结合来自不同MRI序列的信息,包括正在开发的新序列。我们将仔细质疑和测试我们的模型和结果,以减少或消除偏差,并使用我们的分析结果来指导脉冲序列设计。通过这项工作,我打算培养一批多样化的研究生和本科生。我将利用我在科学推广方面的经验,积极鼓励来自各种背景的候选人,以补充被动和部门招聘。有效评价传统上由于伪影而难以成像的样本的能力将扩展该强大工具的实用性,以包括否则无法访问信息性MRI检查的患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feldman, Rebecca其他文献

Immunohistochemistry-Enabled Precision Medicine
  • DOI:
    10.1007/978-3-030-16391-4_4
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gatalica, Zoran;Feldman, Rebecca;Spetzler, David
  • 通讯作者:
    Spetzler, David
Appendix-derived Pseudomyxoma Peritonei (PMP) Molecular Profiling Toward Treatment of a Rare Malignancy
Molecular profiling of head and neck squamous cell carcinoma.
An integrated public health response to an outbreak of Murray Valley encephalitis virus infection during the 2022-2023 mosquito season in Victoria.
在维多利亚州2022-2023蚊子季期间,对默里河谷脑炎病毒感染的爆发的综合反应。
  • DOI:
    10.3389/fpubh.2023.1256149
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Braddick, Maxwell;O'Brien, Helen M.;Lim, Chuan K.;Feldman, Rebecca;Bunter, Cathy;Neville, Peter;Bailie, Christopher R.;Butel-Simoes, Grace;Jung, Min-Ho;Yuen, Aidan;Hughes, Nicole;Friedman, N. Deborah
  • 通讯作者:
    Friedman, N. Deborah
Impact of gender and mutational differences in hormone receptor expressing non-small cell lung cancer.
  • DOI:
    10.3389/fonc.2023.1215524
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Hsu, Robert;Chen, Denaly;Xia, Bing;Feldman, Rebecca;Cozen, Wendy;Raez, Luis E.;Borghaei, Hossein;Kim, Chul;Nagasaka, Misako;Mamdani, Hirva;Vanderwalde, Ari M.;Lopes, Gilberto;Socinski, Mark A.;Wozniak, Antoinette J.;Spira, Alexander I.;Liu, Stephen V.;Nieva, Jorge J.
  • 通讯作者:
    Nieva, Jorge J.

Feldman, Rebecca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feldman, Rebecca', 18)}}的其他基金

Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    RGPIN-2020-06005
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automated medical diagnostic image quality control using AI-based techniques
使用基于人工智能的技术进行自动化医疗诊断图像质量控制
  • 批准号:
    570437-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    RGPIN-2020-06005
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    DGECR-2020-00444
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Localized surface gradient coil for carotid plaque compostion identification
用于颈动脉斑块成分识别的局部表面梯度线圈
  • 批准号:
    347915-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Localized surface gradient coil for carotid plaque compostion identification
用于颈动脉斑块成分识别的局部表面梯度线圈
  • 批准号:
    347915-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似海外基金

Data Science and Medical Image Analysis Training for Improved Health Care Delivery in Nigeria - DATICAN
数据科学和医学图像分析培训以改善尼日利亚的医疗保健服务 - DATICAN
  • 批准号:
    10719097
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
  • 批准号:
    10663654
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Infrastructure automation for connectomic image analysis
连接组图像分析的基础设施自动化
  • 批准号:
    10547607
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    RGPIN-2020-06005
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Toolkit for Normalizing the Impact of CT Acquisition and Reconstruction on Quantitative Image Features
用于标准化 CT 采集和重建对定量图像特征影响的计算工具包
  • 批准号:
    10530062
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Infrastructure automation for connectomic image analysis
连接组图像分析的基础设施自动化
  • 批准号:
    10693397
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Core C. Image Analysis and Data Science (IADS)
核心 C. 图像分析和数据科学 (IADS)
  • 批准号:
    10707334
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Computational Toolkit for Normalizing the Impact of CT Acquisition and Reconstruction on Quantitative Image Features
用于标准化 CT 采集和重建对定量图像特征影响的计算工具包
  • 批准号:
    10426507
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    RGPIN-2020-06005
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Image acquisition and analysis tools for magnetic resonance imaging near brain injury
用于脑损伤附近磁共振成像的图像采集和分析工具
  • 批准号:
    DGECR-2020-00444
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了