Quantitative methods for risk management

风险管理的定量方法

基本信息

  • 批准号:
    RGPIN-2020-06088
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

``They are making those assumptions in order to do their fancy maths!'' is an accusation that all of us, academic actuaries, have heard from practitioners, irrespective of how mathematically savvy these practitioners are. Just a few days ago, Stephen Richards, a practicing actuary (FFA) and a Ph.D. in Mathematics criticized in an acerbic manner ``fancy mathematical models that have zero connection with reality'' at a joint Risk and Insurance Studies Centre / Schulich School of Business colloquium talk. Whether or not there is some truth to Stephen's words, as responsible academic we have to be aware of this rather common opinion, which aggravates the already profound gap between the ivory tower and the workplace reality. This proposal is an effort to put forward deep mathematical methods, which solve those problems that are brought up by practicing risk professionals. Three distinct and yet connected research threads, which are risk aggregation, risk allocation and variability assessment, are explored in this proposal critically through the lens of a dubious risk practitioner. Specifically, we address somewhat inconvenient but salient questions that all go like this: "What if assumption XYZ is inappropriate?", where the various XYZs were identified by a number of actuaries and quantitative risk professionals in Canadian insurance companies and banks. Speaking briefly: In Section 1, we put forward an efficient algorithm, which is able to approximate - fast and accurately irrespective of the number of summands and involved heavy-tailedness - the distributions of sums of dependent risks having distributions in distinct parametric families; In Section 2, we argue for a paradigm shift as to how risk capital allocations should be treated and, as a by product, we unify the top-down and the bottom-up approaches to allocate risk capital; In Section 3, we shed light on the routes to measure variability in leu of variance, and in particular, we propose to develop heavy-tailed variations of the celebrated Hattendorff's theorem that allocate the variability - when measured by coherent and comonotonically additive measures of variability - to future years for virtually any payment stream and rule for accumulation of interest. The methodologies that will be coming out of the proposed research are truly industry-driven and so of direct translational importance, as well as rigorous and of the highest academic caliber. Paraphrasing Steve Jobs, I can genuinely say that it is beautiful mathematics married with social good that makes my heart sing. I am really thrilled about the capable translational research, of which this proposal is an example.
“他们做这些假设是为了做他们的幻想数学!”这是我们所有精算师都从从业人员那里听到的指责,不管这些从业人员有多精通数学。就在几天前,在风险与保险研究中心/舒立克商学院的联合研讨会上,精算师兼数学博士斯蒂芬·理查兹(Stephen Richards)以一种尖刻的方式批评了“与现实毫无联系的花哨数学模型”。不管Stephen的话是否有一定道理,作为负责任的学者,我们必须意识到这种相当普遍的观点,它加剧了象牙塔和工作场所现实之间已经很深的差距。本文试图提出深层次的数学方法,解决风险专业人员在实践中遇到的问题。三个不同而又相互联系的研究线索,即风险聚合、风险分配和变异性评估,在本提案中通过一个可疑的风险从业者的镜头进行了批判性的探索。具体来说,我们解决了一些不方便但突出的问题,这些问题都是这样的:“如果假设XYZ是不合适的怎么办?”,其中各种XYZ是由加拿大保险公司和银行的许多精算师和定量风险专业人员确定的。简要地说:在第1节中,我们提出了一种有效的算法,它能够快速准确地逼近具有不同参数族分布的相关风险的和的分布,而不考虑求和的数量和涉及的重尾性;在第2节中,我们主张如何对待风险资本配置的范式转变,作为副产品,我们统一了自上而下和自下而上的方法来配置风险资本;在第3节中,我们阐明了用方差leu衡量可变性的途径,特别是,我们建议开发著名的Hattendorff定理的重尾变体,该定理将可变性分配到未来几年——当用一致的和共同的可变性累加度量来衡量时——用于几乎任何支付流和利息积累规则。拟议的研究将产生的方法是真正的行业驱动的,因此具有直接的翻译重要性,以及严谨和最高的学术水平。套用史蒂夫·乔布斯的话,我可以真诚地说,美丽的数学与社会公益相结合,让我的心在歌唱。我真的很兴奋有能力的翻译研究,这是一个例子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Furman, Edward其他文献

Weighted premium calculation principles
  • DOI:
    10.1016/j.insmatheco.2007.10.006
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Furman, Edward;Zitikisb, Ricardas
  • 通讯作者:
    Zitikisb, Ricardas
Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type
  • DOI:
    10.1016/j.insmatheco.2020.11.007
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Furman, Edward;Kye, Yisub;Su, Jianxi
  • 通讯作者:
    Su, Jianxi
On log-normal convolutions: An analytical-numerical method with applications to economic capital determination
  • DOI:
    10.1016/j.insmatheco.2019.10.003
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Furman, Edward;Hackmann, Daniel;Kuznetsov, Alexey
  • 通讯作者:
    Kuznetsov, Alexey
Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks
  • DOI:
    10.1016/j.jbankfin.2017.06.013
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Furman, Edward;Wang, Ruodu;Zitikis, Ricardas
  • 通讯作者:
    Zitikis, Ricardas
BEYOND THE PEARSON CORRELATION: HEAVY-TAILED RISKS, WEIGHTED GINI CORRELATIONS, AND A GINI-TYPE WEIGHTED INSURANCE PRICING MODEL
  • DOI:
    10.1017/asb.2017.20
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Furman, Edward;Zitikis, Ricardas
  • 通讯作者:
    Zitikis, Ricardas

Furman, Edward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Furman, Edward', 18)}}的其他基金

Quantitative methods for risk management
风险管理的定量方法
  • 批准号:
    RGPIN-2020-06088
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for risk management
风险管理的定量方法
  • 批准号:
    RGPIN-2020-06088
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
RISC Forum
RISC论坛
  • 批准号:
    522284-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Connect Grants Level 2
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative methods for modelling and pricing dependenent insurance risks
相关保险风险建模和定价的定量方法
  • 批准号:
    RGPIN-2014-05272
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dependance concepts and multivariate probability models in financial risk measurement
金融风险计量中的依赖性概念和多元概率模型
  • 批准号:
    356039-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
  • 批准号:
    10806492
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Multiplex In-Solution Protein Array (MISPA) for high throughput, quantitative, early profiling of pathogen-induced head and neck
多重溶液内蛋白质芯片 (MISPA) 用于对病原体引起的头颈部进行高通量、定量、早期分析
  • 批准号:
    10713928
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Fractality as a quantitative assessment tool for tic disorders and functional tic-like behaviors
分形作为抽动障碍和功能性抽动样行为的定量评估工具
  • 批准号:
    10728174
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
A quantitative viability metric for liver transplantation using Resonance Raman Spectroscopy
使用共振拉曼光谱进行肝移植的定量活力指标
  • 批准号:
    10562740
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Development and Pre-Clinical Validation of Quantitative Imaging of Cell State Kinetics (QuICK) for Functional Precision Oncology
用于功能性精准肿瘤学的细胞状态动力学定量成像 (QuICK) 的开发和临床前验证
  • 批准号:
    10737379
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Quantitative Ultrasound for Assessment of Placental Structure During the Development of Preeclampsia
定量超声评估先兆子痫发展过程中的胎盘结构
  • 批准号:
    10790437
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
  • 批准号:
    10859277
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Radiomics Features of Quantitative Interstitial Abnormalities and Early Pulmonary Fibrosis
定量间质异常和早期肺纤维化的放射组学特征
  • 批准号:
    10603453
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Developing and validating a quantitative measure of daily intersectional stigma experiences for Black people with disabilities
制定并验证残疾黑人日常交叉耻辱经历的定量衡量标准
  • 批准号:
    10771704
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了