Resource allocation for Edge Computing in Next Generation Wireless Networks

下一代无线网络中边缘计算的资源分配

基本信息

  • 批准号:
    RGPIN-2020-06110
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Wireless networks are facing unprecedented challenges in fulfilling the performance requirements of recent and future applications. Despite ongoing research efforts in enhancing wireless communication capabilities through the management of scarce communication resources, current wireless networking infrastructures encounter difficulties to deal with the users' increasing expectations and needs. Fortunately, unlike the fundamentally limited spectrum and power resources, wireless networks can make use of computing and memory resources that are more and more abundant, low-cost and scalable. Therefore, the integration of caching and computing capabilities at the network edge becomes one of the important keys for wireless networks' sustainability. In fact, this integration results in improving numerous system performance metrics, such as spectral and energy efficiency, end-to-end latency, operating and capital expenditures and users' quality of experience. The general objective of this research program is to optimize wireless network performance by proposing innovative approaches for the allocation of communication, caching and computing resources available at the wireless network edge. More specifically, novel resource allocation schemes will be proposed and evaluated in the context of several emerging wireless networking architectures, taking into account the new constraints, opportunities and challenges dictated by the interaction of communications, caching and computing. Specifically, we will consider two emerging technologies, namely mmWave and vehicle-to-everything communications. To this end, theoretical tools such as those from combinatorial and continuous optimization, game theory and machine learning theory will be used to formulate and solve centralized and distributed resource allocation problems. Optimal and benchmark schemes will be first developed before designing low complexity heuristic and approximation algorithms. The performance of the proposed schemes will be then assessed using both analytical and simulation tools. The integration of caching and computing capabilities at the network edge brings various benefits for many network actors. For instance, network providers benefit from a considerable reduction in the backhaul congestion, whereas mobile device users see their quality of experience enhanced and their battery life prolonged. Therefore, the proposed research is expected to give a better understanding of the benefits resulting from the integration of caching and computing at the edge by providing theoretical and simulation results and the design of especially adapted algorithmic solutions. The anticipated research results will be of interest for various Canadian wireless networks industry actors. This research program will prepare several undergraduate and graduate students to meet the needs of the Canadian industry for highly qualified personnel in emerging areas of wireless communications and networks.
无线网络在满足最近和未来应用的性能要求方面面临着前所未有的挑战。尽管在通过管理稀缺的通信资源来增强无线通信能力方面进行了持续的研究努力,但是当前的无线联网基础设施在处理用户日益增长的期望和需求方面遇到了困难。幸运的是,与从根本上有限的频谱和功率资源不同,无线网络可以利用越来越丰富、低成本和可扩展的计算和存储资源。因此,在网络边缘集成缓存和计算能力成为无线网络可持续发展的重要关键之一。事实上,这种集成可以改善许多系统性能指标,例如频谱和能源效率、端到端延迟、运营和资本支出以及用户体验质量。 这项研究计划的总体目标是通过提出创新的方法来分配无线网络边缘的通信,缓存和计算资源,以优化无线网络性能。更具体地说,新的资源分配方案将提出和评估的几个新兴的无线网络架构的背景下,考虑到新的约束,机遇和挑战所规定的通信,缓存和计算的相互作用。具体来说,我们将考虑两种新兴技术,即毫米波和车联网通信。为此,将使用组合和连续优化、博弈论和机器学习理论等理论工具来制定和解决集中式和分布式资源分配问题。在设计低复杂度的启发式和近似算法之前,将首先开发最佳和基准方案。所提出的计划的性能,然后将使用分析和模拟工具进行评估。在网络边缘集成缓存和计算能力为许多网络参与者带来了各种好处。例如,网络提供商受益于回程拥塞的显著减少,而移动终端用户看到他们的体验质量增强并且他们的电池寿命延长。因此,拟议的研究预计将提供理论和模拟结果以及特别适应的算法解决方案的设计,从而更好地了解在边缘集成缓存和计算所带来的好处。预期的研究结果将是感兴趣的各种加拿大无线网络行业的演员。该研究计划将培养几名本科生和研究生,以满足加拿大工业对无线通信和网络新兴领域高素质人才的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

driouch, elmahdi其他文献

driouch, elmahdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('driouch, elmahdi', 18)}}的其他基金

Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
  • 批准号:
    RGPIN-2020-06110
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
  • 批准号:
    DGECR-2020-00443
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

CREB在杏仁核神经环路memory allocation中的作用和机制研究
  • 批准号:
    31171079
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
协同中继系统跨层资源分配与优化调度的理论及方法
  • 批准号:
    60972070
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

CICI: UCSS: Trusted Resource Allocation in Volunteer Edge-Cloud Computing Workflows
CICI:UCSS:志愿者边缘云计算工作流程中的可信资源分配
  • 批准号:
    2232889
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Smart Task Offloading and Resource Allocation in Mobile Edge ComputingXXX (Ref:4659)
移动边缘计算中的智能任务卸载和资源分配XXX(参考:4659)
  • 批准号:
    2885594
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
RINGS: Enabling Wireless Edge-cloud Services via Autonomous Resource Allocation and Robust Physical Layer Technologies
RINGS:通过自主资源分配和强大的物理层技术实现无线边缘云服务
  • 批准号:
    2148128
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CNS Core: Small: DeepEdge: QoE-based Resource Allocation for Future Heterogeneous and Dynamic Edge-IoT Applications
CNS 核心:小型:DeepEdge:面向未来异构和动态边缘物联网应用的基于 QoE 的资源分配
  • 批准号:
    2246698
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
  • 批准号:
    RGPIN-2020-06110
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
  • 批准号:
    RGPIN-2020-06110
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
  • 批准号:
    DGECR-2020-00443
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Edge Computing Resource Allocation for Dynamic Networks
动态网络的边缘计算资源分配
  • 批准号:
    EP/T021942/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
CNS Core: Small: Collaborative Research: A Stochastic Resource Allocation and Task Assignment Framework for Mobile Edge Computing
CNS 核心:小型:协作研究:移动边缘计算的随机资源分配和任务分配框架
  • 批准号:
    1909562
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Collaborative Research: A Stochastic Resource Allocation and Task Assignment Framework for Mobile Edge Computing
CNS 核心:小型:协作研究:移动边缘计算的随机资源分配和任务分配框架
  • 批准号:
    1910348
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了