Methods for Solving Linear and Nonlinear Mixed Integer Programs

求解线性和非线性混合整数规划的方法

基本信息

  • 批准号:
    9908038
  • 负责人:
  • 金额:
    $ 20.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

Several inventory, production and process planning, layout, location, logistics, budgeting, financial planning and investment problems are modeled as linear or nonlinear mixed integer programs. These models arise when optimizing operations of medium to large size enterprises and are considered very hard. Although models for practical problems involve thousands of variables, only problems of very small size(a few hundred variables) have been solved in practice. Previous work introduced several new ideas towards solving these problems. These are: (1) development of a new branch-and-cut method for mixed convex 0-1 problems; (2) the use of nonlinear cuts for nonlinear and linear mixed 0-1 problems; and (3) generating cuts at near optimal vertex solutions for mixed linear 0-1 and integer problems. These ideas need further refinement to convert them into a practical computational methodology for solving general-purpose linear and nonlinear mixed integer programs. This project will study the effectiveness of cuts generated using disjunctive programs for the convex mixed 0-1 problems, and will investigate how these cuts can be generated efficiently. The use of semi-definite relaxations in this context will be investigated as well as their value in solving nonlinear mixed 0-1 programs. The use of nonlinear cuts for solving these problems will also be investigated. If successful, this research will increase the size of difficult nonlinear integer program that can be successfully solved by an order of magnitude. The research has an experimental and software development (computational) component where extensive testing will be performed to validate the practicality of the researched ideas. Since the research is on development of methods for solving linear and nonlinear integer models with general structure, from a practical point of view, a successful outcome is expected to have the widest impact in solving real world models.
多个库存、生产和工艺计划、布局、选址、物流、预算、财务计划和投资问题被建模为线性或非线性混合整数规划。这些模型是在大中型企业优化运营时出现的,被认为是非常困难的。尽管实际问题的模型涉及数千个变量,但在实践中只解决了非常小的问题(几百个变量)。以前的工作介绍了几个解决这些问题的新想法。它们是:(1)发展了一种新的混合凸0-1问题的分枝割方法;(2)对于非线性和线性混合0-1问题,使用了非线性割;(3)对于混合线性0-1和整数问题,在接近最优的顶点解上生成割。这些思想需要进一步改进,以将它们转化为求解通用线性和非线性混合整数规划的实用计算方法。这个项目将研究用析取程序生成的割集对于凸混合0-1问题的有效性,并将研究如何有效地生成这些割集。本文将研究半定松弛的使用以及它们在求解非线性混合0-1规划中的价值。还将研究利用非线性割集来解决这些问题。如果成功,这项研究将使能够成功求解的困难的非线性整数规划的规模增加一个数量级。这项研究有一个实验和软件开发(计算)部分,其中将进行广泛的测试,以验证所研究的想法的实用性。由于研究的重点是开发求解具有一般结构的线性和非线性整数模型的方法,从实用的角度来看,成功的结果有望对现实世界模型的求解产生最广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Mehrotra其他文献

Computational experience with a modified potential reduction algorithm for linear programming
线性规划改进的势能约简算法的计算经验
Stochastic Robust Mathematical Programming Model for Power System Optimization
电力系统优化的随机鲁棒数学规划模型
  • DOI:
    10.1109/tpwrs.2015.2394320
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Cong Liu;Changhyeok Lee;Haoyong Chen;Sanjay Mehrotra
  • 通讯作者:
    Sanjay Mehrotra
Multiple mycotic aneurysms post coarctoplasty with stenting–An unusual presentation of a known complication
  • DOI:
    10.1016/j.ihjccr.2017.11.003
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jyothi Vaidyanathan;Gurappa Gojanur Shetty;Sanjay Mehrotra;Devi Prasad Shetty
  • 通讯作者:
    Devi Prasad Shetty
Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method
使用改进的势约简内点法求解单调互补和一般凸规划问题
  • DOI:
    10.1287/ijoc.2016.0715
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuo;Sanjay Mehrotra
  • 通讯作者:
    Sanjay Mehrotra
Tubercular Ulcer: Mimicking Squamous Cell Carcinoma of Buccal Mucosa
  • DOI:
    10.1007/s12663-011-0282-1
  • 发表时间:
    2011-09-04
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Hari Ram;Santosh Kumar;Sanjay Mehrotra;Shadab Mohommad
  • 通讯作者:
    Shadab Mohommad

Sanjay Mehrotra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Mehrotra', 18)}}的其他基金

Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229410
  • 财政年份:
    2022
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Equitable and Efficient Resource Allocation using Stochastic Fractional Optimization
使用随机分数优化实现公平且高效的资源分配
  • 批准号:
    1763035
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
RAPID: Addressing Geographic Disparities in the National Organ Transplant Network
RAPID:解决国家器官移植网络中的地理差异
  • 批准号:
    1743886
  • 财政年份:
    2017
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
I-Corps: Clinical Workforce Schedule Optimization Technology
I-Corps:临床劳动力调度优化技术
  • 批准号:
    1764312
  • 财政年份:
    2017
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Solution Methods for Function Robust Optimization Models
协作研究:函数鲁棒优化模型的分析与求解方法
  • 批准号:
    1361942
  • 财政年份:
    2014
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Managing Downstream Patient Flow Processes Using Improved Coordination and Staffing
使用改进的协调和人员配置来管理下游患者流动流程
  • 批准号:
    1335585
  • 财政年份:
    2013
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Models and Algorithms for Risk Adjusted Optimization with Robust Utilities
具有稳健实用程序的风险调整优化模型和算法
  • 批准号:
    1131386
  • 财政年份:
    2011
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Addressing Geographical Disparities in Transplant Organ Accessibility Across United States
解决美国各地移植器官可及性的地理差异
  • 批准号:
    1131568
  • 财政年份:
    2011
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Distribution and Moment-Robust Optimization Models and Algorithms
分布和矩鲁棒优化模型和算法
  • 批准号:
    1100868
  • 财政年份:
    2011
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Multi-objective Robust Stochastic Planning and Scheduling of Healthcare Service Providers
医疗服务提供者的多目标鲁棒随机规划和调度
  • 批准号:
    0928936
  • 财政年份:
    2009
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
  • 批准号:
    2312220
  • 财政年份:
    2023
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
Comprehensive development of fast numerical methods for solving large linear systems with matrix functions
全面发展求解具有矩阵函数的大型线性系统的快速数值方法
  • 批准号:
    26286088
  • 财政年份:
    2014
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of numerical methods for solving large-scale ill-conditioned linear system of equations and its applications
求解大规模病态线性方程组数值方法的发展及其应用
  • 批准号:
    24560518
  • 财政年份:
    2012
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fast and accurate methods for solving linear systems with multiple right-hand sides and their application to scientific computations
开发快速、准确的方法来求解具有多个右侧的线性系统及其在科学计算中的应用
  • 批准号:
    22700003
  • 财政年份:
    2010
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on fast and robust iterative methods for solving large and sparse shifted linear systems arising from computational science
研究计算科学中求解大型稀疏移位线性系统的快速鲁棒迭代方法
  • 批准号:
    21760058
  • 财政年份:
    2009
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on fast and stable iterative methods for solving large and sparse linear systems arising from computational science
计算科学中求解大型稀疏线性系统的快速稳定迭代方法研究
  • 批准号:
    18760063
  • 财政年份:
    2006
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stochastically-inspired methods for solving systems of linear equations
求解线性方程组的随机方法
  • 批准号:
    0634802
  • 财政年份:
    2006
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Standard Grant
CAREER: Solving Over-Constrained Systems of Non-Linear Equations by Symbolic-Numeric Methods
职业:用符号数值方法求解非线性方程组的过约束系统
  • 批准号:
    0347506
  • 财政年份:
    2004
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Continuing Grant
Synthetical development of fast numerical methods for solving large-scale linear systems which arise g from the field of computational science and engineerin
计算科学与工程领域兴起的用于求解大规模线性系统的快速数值方法的综合发展
  • 批准号:
    15360042
  • 财政年份:
    2003
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Iterative methods for solving unsymmetric linear systems; visits to various institutions in Zurich, Fribourg and Geneva, Switzerland
求解非对称线性系统的迭代方法;
  • 批准号:
    150297-1993
  • 财政年份:
    1993
  • 资助金额:
    $ 20.32万
  • 项目类别:
    Bilateral Exchange Program (H)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了