Smart Surrogate Models for Design and Operation of Efficient and Sustainable Comminution Units

用于高效和可持续粉碎装置的设计和运行的智能替代模型

基本信息

  • 批准号:
    RGPIN-2020-06969
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In comminution, computer simulations are commonly used to test unit designs to ensure reliable operation under a variety of operating conditions. Due to complex process dynamics inside the grinding mills, which are further complicated by unavoidable variations in ore feed properties, it is a challenging task to develop a model that can capture unique characteristics of a particular unit. The spatial and temporal resolution requirements for multiphase flows typical for grinding mills make numerical simulations computationally expensive, which are often beyond the reach of many in the mining industry. A paradigm shift in simulation technology is needed to make multi-physics simulations of grinding mills more practical for design, optimization, and control purposes. This can be achieved through the development and application of hybrid physics-based and data-driven surrogate models that can strike a balance between model accuracy or complexity on the one hand, and practical operational considerations on the other. Advances in data analytics and machine learning have enabled the possibility of construction of data-fitted surrogate models that can duplicate the behavior of the numerical results used for their construction. Smart surrogate modeling takes advantage of pattern recognition capabilities of machine learning to build powerful tools to predict the behavior of a system with a far less computational cost. In this research program, an interdisciplinary approach combining machine learning, physics-based simulations, and real-time data analytics will be used to develop a robust surrogate model of a grinding mill. The main goal of this research program is to develop and validate a complete digital replica of a mill, which will be executed in real-time and provide unprecedented visibility into the process under variable operating conditions. A data-driven smart surrogate model will be developed to mimic results from numerical simulations with high accuracy and faster execution time. This unique engineering-based data analytics approach will utilize artificial neural networks in conjunction with supervised fuzzy cluster analysis to identify the most influential parameters for the training process and identify the optimum partitioning of the data for training, calibration, and validation. The proposed research will significantly enhance our capability to find optimal parameter vectors, both design and operational, and asses the global behavior of grinding mills over the entire design space. This will lead to improved understanding of dependencies between input and output parameters, which will in turn help optimize grinding operations, decrease energy and water consumption, and therefore produce significant economic savings. Finally, this program will contribute to the education and training of HQP in the fields of mining and minerals processing, statistical data analysis and visualization, machine learning, and advanced process modeling and control.
在粉碎中,计算机模拟通常用于测试单元设计,以确保在各种操作条件下的可靠操作。由于磨米尔斯内复杂的过程动态,矿石给料特性的不可避免的变化使其进一步复杂化,因此开发一个能够捕捉特定单元独特特性的模型是一项具有挑战性的任务。磨米尔斯典型多相流的空间和时间分辨率要求使得数值模拟的计算成本很高,这通常超出了采矿业许多人的能力范围。为了使磨米尔斯的多物理场仿真更实用于设计、优化和控制目的,需要在仿真技术中进行范式转换。这可以通过开发和应用基于物理和数据驱动的混合替代模型来实现,这些模型可以在模型准确性或复杂性与实际操作考虑之间取得平衡。数据分析和机器学习的进步使得构建数据拟合的替代模型成为可能,这些模型可以复制用于构建的数值结果的行为。智能代理建模利用机器学习的模式识别功能来构建强大的工具,以更少的计算成本预测系统的行为。在这项研究计划中,结合机器学习,基于物理的模拟和实时数据分析的跨学科方法将用于开发一个强大的替代模型。该研究计划的主要目标是开发和验证一个完整的数字化工厂复制品,该复制品将实时执行,并在可变的操作条件下提供前所未有的过程可见性。将开发一个数据驱动的智能代理模型,以高精度和更快的执行时间模拟数值模拟的结果。这种独特的基于工程的数据分析方法将利用人工神经网络与监督模糊聚类分析相结合,以确定训练过程中最具影响力的参数,并确定用于训练、校准和验证的数据的最佳划分。拟议的研究将显着提高我们的能力,找到最佳的参数向量,设计和操作,并评估全球的行为,研磨米尔斯在整个设计空间。这将有助于更好地理解输入和输出参数之间的依赖关系,从而有助于优化研磨操作,降低能耗和水耗,从而产生显著的经济节约。最后,该计划将有助于HQP在采矿和矿物加工,统计数据分析和可视化,机器学习以及高级过程建模和控制领域的教育和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miskovic, Sanja其他文献

GIPPE-RPT: Geant4 interface for particle physics experiments applied to Radioactive Particle Tracking
  • DOI:
    10.1016/j.apradiso.2021.110041
  • 发表时间:
    2021-12-13
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lindner, Guilherme Anrain;Miskovic, Sanja
  • 通讯作者:
    Miskovic, Sanja
CFD simulation of single-phase flow in flotation cells: Effect of impeller blade shape, clearance, and Reynolds number
Transfer learning for radioactive particle tracking
  • DOI:
    10.1016/j.ces.2021.117190
  • 发表时间:
    2021-10-26
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lindner, Guilherme;Shi, Sai;Miskovic, Sanja
  • 通讯作者:
    Miskovic, Sanja
A chimera approach for MP-PIC simulations of dense particulate flows using large parcel size relative to the computational cell size
  • DOI:
    10.1016/j.ceja.2020.100054
  • 发表时间:
    2021-03-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caliskan, Utkan;Miskovic, Sanja
  • 通讯作者:
    Miskovic, Sanja

Miskovic, Sanja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miskovic, Sanja', 18)}}的其他基金

Smart Surrogate Models for Design and Operation of Efficient and Sustainable Comminution Units
用于高效和可持续粉碎装置的设计和运行的智能替代模型
  • 批准号:
    RGPIN-2020-06969
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Surrogate Models for Design and Operation of Efficient and Sustainable Comminution Units
用于高效和可持续粉碎装置的设计和运行的智能替代模型
  • 批准号:
    RGPIN-2020-06969
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
  • 批准号:
    2886134
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
eMB: Bridging the Gap Between Agent Based Models of Complex Biological Phenomena and Real-World Data Using Surrogate Models
eMB:使用代理模型弥合基于代理的复杂生物现象模型与真实世界数据之间的差距
  • 批准号:
    2324818
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
  • 批准号:
    2764855
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
Smart Surrogate Models for Design and Operation of Efficient and Sustainable Comminution Units
用于高效和可持续粉碎装置的设计和运行的智能替代模型
  • 批准号:
    RGPIN-2020-06969
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary Computing: Constraints, Surrogate Models, and Noisy Gradients
进化计算:约束、代理模型和噪声梯度
  • 批准号:
    RGPIN-2020-04833
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Surrogate models for substructure fatigue load estimation of offshore wind turbines
海上风力发电机下部结构疲劳载荷估算的替代模型
  • 批准号:
    2748731
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
Using component surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用组件替代模型
  • 批准号:
    580451-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Modelling Framework to Generate Surrogate Models of a Building Performance Simulation Tool
用于生成建筑性能模拟工具替代模型的建模框架
  • 批准号:
    572688-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: Fusing Massive Disparate Data and Fast Surrogate Models for Probabilistic Quantification of Uncertain Hazards
协作研究:融合海量不同数据和快速替代模型以对不确定危害进行概率量化
  • 批准号:
    2053414
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了