Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems

结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统

基本信息

  • 批准号:
    RGPIN-2020-07145
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

We are in the midst of an artificial intelligence (AI) revolution. Computational advances have culminated in massive strides being taken towards having computers "think". Machine learning (ML) has driven most of these advancements where computational algorithms and methodologies - most notably neural networks - are employed to identify patterns in large data sets and then, based on this training, predict outcomes when given smaller amounts of input data. In the past couple of years ML has fundamentally changed established practices from evaluating medical data to fraud detection to financial prediction. Its impact on scientific research is equally astounding. This grant application focuses on the use of ML to solve mathematical equations. While we understand that physical things and processes can be modelled with mathematical equations, finding the equations is often less challenging than actually solving them. ML provides a highly effective and powerful way to solve equations and produce meaningful answers. We intend to advance ML techniques to solve partial differential equations (PDEs). These are a class of equations that can describe complex processes and environments. PDEs can describe the flow of molecules within nanofluidic devices which have dimensions on the order of nanometers (a nm is around ten thousand times smaller than the width of human hair). They are able to isolate, characterize, and modify single biological molecules such as DNA and proteins. A primary use of these devices is in advanced medical practices such as personalized medicine where risk, diagnosis, and therapeutics are informed by one's genetic makeup. Our goal is to develop machine learning methods and techniques to significantly enhance nanofluidic device research and design. ML methods can solve systems that depend on a large number of factors (i.e., high dimensional), allowing the study of complex systems across all possible situations; this is difficult to do with other approaches. This enables us to efficiently refine current and design new devices for tasks such as identifying unique DNA strands that indicate a particular disease. While our focus is on developing these techniques for nanofluidic devices, this knowledge will translate to a vast array of other scenarios from nuclear reactor design to understanding how cream mixes with coffee. By developing ML as a powerful tool for solving PDEs, our research can also benefit computation-based research in other academic labs as well as industrial R&D. This work will help position Canadian academic research at the forefront of the ML revolution. It also will equip Canadian businesses with a powerful tool for rapid and cost efficient development of their technologies. Through training undergraduate and graduate students, this research program will produce the highly qualified personnel needed to ensure Canada remains at the leading edge of a rapidly evolving and increasingly technological global economy.
我们正处于一场人工智能(AI)革命之中。计算技术的进步最终导致了计算机在“思考”方面的巨大进步。机器学习(ML)推动了这些进步中的大部分,其中计算算法和方法-最明显的是神经网络-用于识别大型数据集中的模式,然后基于这种训练,在给定少量输入数据时预测结果。在过去的几年里,ML从根本上改变了从评估医疗数据到欺诈检测再到财务预测的既定做法。它对科学研究的影响同样令人震惊。这个拨款申请的重点是使用ML来解决数学方程。虽然我们知道物理事物和过程可以用数学方程建模,但找到方程往往比实际求解它们更具挑战性。ML提供了一种非常有效和强大的方法来求解方程并产生有意义的答案。我们打算推进ML技术来解决偏微分方程(PDE)。这是一类可以描述复杂过程和环境的方程。偏微分方程可以描述纳米流体装置内的分子流动,这些纳米流体装置具有纳米量级的尺寸(纳米大约比人类头发的宽度小一万倍)。它们能够分离、表征和修饰单个生物分子,如DNA和蛋白质。这些设备的主要用途是在先进的医疗实践中,例如个性化医疗,其中风险、诊断和治疗取决于一个人的基因构成。我们的目标是开发机器学习方法和技术,以显着提高纳米流体设备的研究和设计。ML方法可以解决依赖于大量因素的系统(即,高维),允许在所有可能的情况下研究复杂系统;这是很难用其他方法做到的。这使我们能够有效地改进现有设备并设计新设备,以完成识别指示特定疾病的独特DNA链等任务。虽然我们的重点是为纳米流体设备开发这些技术,但这些知识将转化为从核反应堆设计到了解奶油如何与咖啡混合的大量其他场景。 通过开发ML作为解决偏微分方程的强大工具,我们的研究也可以使其他学术实验室和工业研发中基于计算的研究受益。这项工作将有助于将加拿大的学术研究置于机器学习革命的最前沿。它还将为加拿大企业提供一个强大的工具,以快速和具有成本效益的方式开发其技术。通过培养本科生和研究生,该研究计划将产生所需的高素质人才,以确保加拿大在快速发展和日益技术化的全球经济中保持领先地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

deHaan, Hendrick其他文献

deHaan, Hendrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('deHaan, Hendrick', 18)}}的其他基金

Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
  • 批准号:
    RGPIN-2020-07145
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
  • 批准号:
    RGPIN-2020-07145
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
  • 批准号:
    RGPIN-2014-06091
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
  • 批准号:
    RGPIN-2014-06091
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
  • 批准号:
    RGPIN-2014-06091
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating the dynamic structure of polysaccharide nanoparticles for drug attachment and delivery
模拟用于药物附着和递送的多糖纳米颗粒的动态结构
  • 批准号:
    486399-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Engage Grants Program
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
  • 批准号:
    RGPIN-2014-06091
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Nanobiophysics: Modeling and Simulating Biomolecules in Confinement
计算纳米生物物理学:约束中生物分子的建模和模拟
  • 批准号:
    RGPIN-2014-06091
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
  • 批准号:
    61170020
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Deep Web敏感聚合信息保护方法研究
  • 批准号:
    61003054
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
  • 批准号:
    61070122
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

MCA: Combining Drone Imagery and Deep Learning to Map Fine-Scale Heterogeneity in Arctic Vegetation
MCA:结合无人机图像和深度学习来绘制北极植被的精细尺度异质性地图
  • 批准号:
    2321530
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
SHF: Medium: Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning
SHF:Medium:Scallop:一种将逻辑与深度学习相结合的神经符号编程框架
  • 批准号:
    2313010
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
  • 批准号:
    2327502
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
A new hybrid modeling framework combining biophysics and deep learning to predict and optimize peripheral neuromodulation outcomes in lower urinary tract disease
一种新的混合建模框架,结合生物物理学和深度学习来预测和优化下尿路疾病的周围神经调节结果
  • 批准号:
    10705188
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
I-Corps: Combining Traditional Building Inspection Sensors with Deep Learning and Robotics
I-Corps:将传统建筑检测传感器与深度学习和机器人技术相结合
  • 批准号:
    2232494
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
A new hybrid modeling framework combining biophysics and deep learning to predict and optimize peripheral neuromodulation outcomes in lower urinary tract disease
一种新的混合建模框架,结合生物物理学和深度学习来预测和优化下尿路疾病的周围神经调节结果
  • 批准号:
    10502727
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
  • 批准号:
    RGPIN-2020-07145
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Theory, Deep Learning, and Lidar to Test Climate and Slope Controls on Tree Throw Production on Hillslopes
结合理论、深度学习和激光雷达来测试山坡植树生产的气候和坡度控制
  • 批准号:
    2218293
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Discovering New Knowledge by Combining Symbolic Logic and Deep Learning
结合符号逻辑和深度学习发现新知识
  • 批准号:
    22K21302
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了