Combining Theory, Deep Learning, and Lidar to Test Climate and Slope Controls on Tree Throw Production on Hillslopes

结合理论、深度学习和激光雷达来测试山坡植树生产的气候和坡度控制

基本信息

  • 批准号:
    2218293
  • 负责人:
  • 金额:
    $ 40.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

When trees fall over and uproot, they suddenly heave soil and rock from deep in the soil mantle to the surface. This process, called tree throw, is an important contributor to sediment transport on hills and influences soils, water, carbon, and ecology in forested landscapes, yet quantifying the frequency of such events is challenging because events are infrequent. However, tree throw leaves a topographic signature: a pit in the location of the fallen tree and a mound of “thrown” sediment immediately downslope. The topographic signature of tree throw persists for many decades or centuries so that the land surface represents a history of tree throw events and offers an opportunity to quantify the process. Further, because tree throw is often driven by extreme weather, the topographic signature of tree throw may serve as an archive of extreme events. Building on theory that describes the roughness of the land surface due to the periodic creation of pits and mounds, the investigators will leverage topographic signatures from high resolution topographic data, theory, and machine learning to map tree throw instances across large areas. The team will engage K-12 teachers through the Indiana University’s Education for Environmental Change program that consists of a week-long workshop that focuses on experiential learning and curriculum development. Finally, by combining Earth science and deep learning, graduate students working on this grant will be trained in cross-disciplinary methods and will be able to address problems in science, industry, and informatics-related fields. Tree throw occurs when extreme atmospheric events exert forces on forest canopies that can exceed soil and root strengths. The uprooting creates a topographic signature in forest floors, which creep-like processes rework and degrade. Thus, the spatial patterns of topographic roughness contain process information of tree throw rates and the events that drive them. This project will establish new methods for automated mapping of pit-mound couplets in topographic data and theory to interpret roughness in process-based terms. The researchers will use lidar data at select sites in Indiana, West Virginia, Pennsylvania, South Carolina, and Tennessee to identify pit-mound couplets. They will also augment publicly available data with higher resolution lidar datasets that they will collect using an unmanned aerial vehicle equipped with a lidar unit. To map pit-mound couplets across large areas, the researchers will develop and train deep learning algorithms that automatically map the locations of pit-mound couplets. They anticipate mapping several million features across southern Indiana where they have already demonstrated a high density of tree throw pit-mound couplets. The research team will combine the automatically mapped inventory of tree throw events with existing theory to provide new insights on what controls the rates and spatial patterns of tree throw.This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support AI/ML and open science activities in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当树木倒下并连根拔起时,它们会突然将土幔深处的土壤和岩石推到地表。这一过程被称为树木抛掷,是山上沉积物迁移的重要因素,并影响森林景观中的土壤、水、碳和生态,但量化此类事件的频率具有挑战性,因为事件很少发生。然而,树木抛掷留下了地形特征:倒下的树木所在位置有一个坑,以及立即下坡的“抛掷”沉积物堆。树木抛掷的地形特征持续了数十年或数百年,因此地表代表了树木抛掷事件的历史,并提供了量化该过程的机会。此外,由于树木抛掷通常是由极端天气驱动的,因此树木抛掷的地形特征可以作为极端事件的档案。基于描述由于坑和土丘的周期性形成而导致的地表粗糙度的理论,研究人员将利用高分辨率地形数据、理论和机器学习中的地形特征来绘制大面积的树投掷实例图。该团队将通过印第安纳大学的环境变化教育计划吸引 K-12 教师,该计划包括为期一周的研讨会,重点关注体验式学习和课程开发。最后,通过将地球科学和深度学习相结合,从事这项资助的研究生将接受跨学科方法的培训,并将能够解决科学、工业和信息学相关领域的问题。当极端大气事件对森林冠层施加的作用力超过土壤和根系的强度时,就会发生树木抛掷。这种连根拔起在森林地面上形成了地形特征,这种地形特征像蠕变一样进行了返工和退化。因此,地形粗糙度的空间模式包含树木抛掷率的过程信息以及驱动它们的事件。该项目将建立新的方法,用于在地形数据和理论中自动绘制坑丘联,以基于过程的术语解释粗糙度。研究人员将使用印第安纳州、西弗吉尼亚州、宾夕法尼亚州、南卡罗来纳州和田纳西州选定地点的激光雷达数据来识别坑丘对联。他们还将使用配备激光雷达装置的无人机收集的更高分辨率的激光雷达数据集来增强公开数据。为了绘制大范围的坑丘对联地图,研究人员将开发和训练深度学习算法,自动绘制坑丘对联的位置。他们预计将绘制印第安纳州南部数百万个要素的地图,在那里他们已经展示了高密度的树坑堆对联。研究团队将自动映射的树木投掷事件清单与现有理论相结合,以提供关于控制树木投掷速率和空间模式的新见解。该项目由地球科学理事会和高级网络基础设施办公室之间的合作共同资助,以支持地球科学领域的人工智能/机器学习和开放科学活动。该奖项反映了 NSF 的法定使命,并被认为值得通过 使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doug Edmonds其他文献

Doug Edmonds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doug Edmonds', 18)}}的其他基金

Collaborative Research: Unraveling the Controls on the Origin and Environmental Functioning of Oxbow Lakes
合作研究:揭示 Oxbow 湖的起源和环境功能的控制
  • 批准号:
    2321056
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
TESTING MODELS FOR RIVER AVULSION STYLE WITH REMOTE SENSING DATA AND NUMERICAL SIMULATIONS
河流撕扯式遥感数据与数值模拟测试模型
  • 批准号:
    1911321
  • 财政年份:
    2019
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding deltas through the lens of their channel networks
合作研究:通过渠道网络的视角了解三角洲
  • 批准号:
    1812019
  • 财政年份:
    2018
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Coastal SEES Collaborative Research: Changes in actual and perceived coastal flood risks due to river management strategies
沿海 SEES 合作研究:河流管理策略导致的实际和感知的沿海洪水风险的变化
  • 批准号:
    1426997
  • 财政年份:
    2014
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Catchments and Coastlines--The Influence of Sediment Load and Type on Delta Morphodynamics and Deposits
合作研究:流域和海岸线--沉积物负荷和类型对三角洲形态动力学和沉积物的影响
  • 批准号:
    1329542
  • 财政年份:
    2012
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Defining controls on incisional avulsions in alluvial basins
合作研究:确定冲积盆地切口撕脱的控制措施
  • 批准号:
    1249330
  • 财政年份:
    2012
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Defining controls on incisional avulsions in alluvial basins
合作研究:确定冲积盆地切口撕脱的控制措施
  • 批准号:
    1123847
  • 财政年份:
    2011
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Catchments and Coastlines--The Influence of Sediment Load and Type on Delta Morphodynamics and Deposits
合作研究:流域和海岸线--沉积物负荷和类型对三角洲形态动力学和沉积物的影响
  • 批准号:
    1061380
  • 财政年份:
    2011
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
  • 批准号:
    2309810
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Continuing Grant
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
  • 批准号:
    23K16948
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309778
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Theory and Practice of Deep Learning Based on Fisher Information Matrix and MDL Principle
基于Fisher信息矩阵和MDL原理的深度学习理论与实践
  • 批准号:
    23H05492
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
  • 批准号:
    EP/X028860/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Research Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309777
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Algorithms and Theory for Compressing Deep Neural Networks
压缩深度神经网络的算法和理论
  • 批准号:
    2208126
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208272
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212065
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了