Probing phonon hydrodynamics in 2D materials
探测二维材料中的声子流体动力学
基本信息
- 批准号:RGPIN-2021-02957
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is strange that, given heat's inseparable connection with every physical process, a complete picture of thermal physics has continued to elude scientists and engineers. Pushing our fundamental understanding of thermal physics is critical to increasing energy conversion efficiency in clean energy technologies (i.e., thermoelectrics and photovoltaics), improving the cooling of electronic devices (i.e., CPUs) and addressing the challenges of qubit decoherence in quantum computers. The typical textbook understanding of thermal transport in a solid is described phenomenologically by the diffusive equation or, equivalently, Fourier's Law. However, as the size of the system shrinks to the order of the length scale of the scattering between the microscopic carriers of heat (i.e., phonons), this picture breaks down and an atomistic description is required. We developed a bottom-up theoretical approach that took material properties obtained from first principles quantum mechanical calculations (i.e., density functional theory) as input to the Boltzmann transport equation to predict the experimental observable (i.e., temperature). This framework was extended and found to be capable of capturing what was previously considered to be an exotic thermal transport regime: phonon hydrodynamics. A signature of this regime is that temperature does not evolve according to the diffusion equation, but rather obeys the wave equation. Applying this theory, we reported the experimental confirmation of second sound in graphite at temperatures above 100 K, setting the current record for high temperature phonon hydrodynamics. Prior to this result, second sound had only been observed in a handful of materials at temperatures below 20 K, with active research ceasing in the 1970s. Our result revitalizes a nearly forgotten idea and opens up multiple paths forward for fundamental and applied research, which will be the focus of the proposed Discovery Grant research program. We will begin by extending our numerical framework that will take data obtained from first principles and machine learning calculations as input and predict experimental hydrodynamic signatures. We will then use this framework to guide our experimental efforts to observe phonon hydrodynamics in 2D materials and van der Waals heterostructures. Using our validated theoretical and experimental tools, we will engineer the microscopic properties materials to control phonon hydrodynamics for specific technological applications. To push the limits of our clean energy conversion and storage technologies as well as our computing power, we must push our understanding of the concomitant thermal processes. This research program will establish a state of the art platform for the future study of phonon hydrodynamics that will benefit Canada's efforts to adopt clean energy technologies and train the next generation of world class scientists and engineers.
奇怪的是,鉴于热与每个物理过程都密不可分,科学家和工程师仍然无法了解热物理的完整图景。推动我们对热物理学的基本理解对于提高清洁能源技术(即热电和光伏)的能量转换效率、改善电子设备(即 CPU)的冷却以及解决量子计算机中量子位退相干的挑战至关重要。教科书上对固体热传输的典型理解是通过扩散方程或等效的傅立叶定律从现象学上描述的。然而,当系统的尺寸缩小到微观热载体(即声子)之间的散射长度尺度时,这张图就崩溃了,需要原子描述。我们开发了一种自下而上的理论方法,它将从第一原理量子力学计算(即密度泛函理论)获得的材料特性作为玻尔兹曼输运方程的输入来预测实验可观测值(即温度)。该框架经过扩展,发现能够捕获以前被认为是奇异的热传输机制:声子流体动力学。这种状态的一个特征是温度不根据扩散方程演化,而是服从波动方程。应用这一理论,我们报告了在 100 K 以上温度下石墨中第二声的实验证实,创下了高温声子流体动力学的当前记录。在此结果之前,仅在温度低于 20 K 的少数材料中观察到第二声音,积极的研究在 20 世纪 70 年代停止。我们的结果重振了一个几乎被遗忘的想法,并为基础和应用研究开辟了多种前进道路,这将是拟议的发现资助研究计划的重点。我们将首先扩展我们的数值框架,该框架将从第一原理和机器学习计算中获得的数据作为输入并预测实验流体动力学特征。然后,我们将使用这个框架来指导我们观察二维材料和范德华异质结构中的声子流体动力学的实验工作。使用我们经过验证的理论和实验工具,我们将设计微观特性材料来控制特定技术应用的声子流体动力学。为了突破清洁能源转换和存储技术以及计算能力的极限,我们必须加深对随之而来的热过程的理解。该研究计划将为未来的声子流体动力学研究建立一个最先进的平台,这将有利于加拿大采用清洁能源技术和培训下一代世界级科学家和工程师的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huberman, Samuel其他文献
Unifying first-principles theoretical predictions and experimental measurements of size effects in thermal transport in SiGe alloys
- DOI:
10.1103/physrevmaterials.1.054601 - 发表时间:
2017-10-05 - 期刊:
- 影响因子:3.4
- 作者:
Huberman, Samuel;Chiloyan, Vazrik;Chen, Gang - 通讯作者:
Chen, Gang
Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions
- DOI:
10.1038/s41563-020-0612-0 - 发表时间:
2020-02-24 - 期刊:
- 影响因子:41.2
- 作者:
Lu, Qiyang;Huberman, Samuel;Yildiz, Bilge - 通讯作者:
Yildiz, Bilge
Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations
- DOI:
10.1063/1.5139069 - 发表时间:
2020-04-20 - 期刊:
- 影响因子:4
- 作者:
Chiloyan, Vazrik;Huberman, Samuel;Chen, Gang - 通讯作者:
Chen, Gang
Huberman, Samuel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huberman, Samuel', 18)}}的其他基金
Probing phonon hydrodynamics in 2D materials
探测二维材料中的声子流体动力学
- 批准号:
RGPIN-2021-02957 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Probing phonon hydrodynamics in 2D materials
探测二维材料中的声子流体动力学
- 批准号:
DGECR-2021-00209 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Machine Learning Solutions to the Problems of Scaling and Representation in Automated Material Discovery
机器学习解决自动材料发现中的缩放和表示问题
- 批准号:
557122-2020 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
A Hierarchical Approach to Nanoscale Thermal Energy Transport
纳米级热能传输的分层方法
- 批准号:
442378-2013 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Hierarchical Approach to Nanoscale Thermal Energy Transport
纳米级热能传输的分层方法
- 批准号:
442378-2013 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Hierarchical Approach to Nanoscale Thermal Energy Transport
纳米级热能传输的分层方法
- 批准号:
442378-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Hierarchical Approach to Nanoscale Thermal Energy Transport
纳米级热能传输的分层方法
- 批准号:
425711-2012 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Master's
Effect of selective accomodation on transition regime heat transfer from a nanosphere
选择性调节对纳米球过渡态传热的影响
- 批准号:
399936-2010 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
Processing, characterization and properties of monolayer and laminated Al alloys
单层和层压铝合金的加工、表征和性能
- 批准号:
387391-2009 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
相似海外基金
The elasticity of male fertility by means of phonon microscopy
通过声子显微镜观察男性生育能力的弹性
- 批准号:
EP/Y002857/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
- 批准号:
2336038 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
EAGER: In-situ spectral phonon recycling in LED for improved thermal, power and performance efficiency
EAGER:LED 中的原位光谱声子回收可提高热、功率和性能效率
- 批准号:
2407260 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Quantized Phonon Conductance of One-dimensional Systems
一维系统的量子化声子电导
- 批准号:
2231376 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
フォノン熱物性を基点としたキラル誘起電子スピン偏極の機構探索
基于声子热物理性质的手性诱导电子自旋极化机制探索
- 批准号:
23H01836 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Strain tuning phonon topology in flexible organic crystals
柔性有机晶体中的应变调谐声子拓扑
- 批准号:
2882249 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
- 批准号:
EP/V049011/2 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
- 批准号:
2205973 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




