Real-time Dynamic Optimization for Omnichannel Retailers

全渠道零售商的实时动态优化

基本信息

  • 批准号:
    RGPIN-2021-02973
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This project seeks to use mathematical models and analysis to identify near-optimal algorithms for dynamic optimization problems arising in omnichannel retail. The central theme is to help omnichannel retailers understand how various decisions (e.g. pricing, assortment and inventory) should be made when order fulfillment (i.e. physical delivery of products to customers) is costly. Omnichannel retail refers to a fully integrated approach where customers are provided with a unified shopping experience across multiple channels. It is fast emerging as the default mode for retail operations. To enable a seamless shopping experience with multiple touchpoints, omnichannel retailers endure significant operational costs from order fulfillment activities. Moreover, correlated decisions need to be optimized jointly to maximize profits. The increasing practical importance of this area and the sparsity of academic literature present exciting research opportunities that will be directly impactful in a broad sense. Motivated by recent innovations in omnichannel retail, we will investigate the following three closely related research questions that have not been addressed in the literature: 1. What is the value of delayed order fulfillment? 2. How can retailers jointly optimize delivery option offerings and order fulfillment decisions? 3. How do inflexibilities in the fulfillment process affect retailer's pricing and inventory decisions? Our research will provide solutions that align theory with business practices, and highlight the benefit and feasibility of joint dynamic optimization. From a theoretical perspective, our problems are modelled as stochastic control problems that are intractable to solve optimally. We plan to propose algorithms that are easily implementable in real-time and have near-optimal performance guarantees. As the problems involve novel dynamics that have not been studied before, this project broadly contributes to stochastic control and online algorithm literature. Five HQPs will gain a skillset that is highly in demand in Operations and Data Analytics that is essential to address relevant real-world problems and for success in an academic or industry career. From a practical perspective, this project timely addresses common challenges faced by omnichannel retailers, who rely on complicated logistic networks to serve customers with high service requirements. Our algorithms will be tested using real data and have the potential of being implemented by industry partners in the retail sector (e.g. Amazon, Oracle Labs, and Instacart). Driven by the rise of Generation Z and the impact of the COVID-19 pandemic, consumer shopping habits have changed drastically. The research outcomes will benefit the broader retail industry in embracing these changes. The potential economic impact on Canadian retail sectors will be significant, since even a moderate improvement of 1% in revenue could translate to over CAD 5B of additional sales.
这个项目寻求使用数学模型和分析来确定在全渠道零售中出现的动态优化问题的接近最优的算法。中心主题是帮助全渠道零售商了解当订单履行(即向客户实际交付产品)成本高昂时应如何做出各种决策(例如定价、分类和库存)。全渠道零售是指一种完全集成的方式,为客户提供跨多个渠道的统一购物体验。它正在迅速崛起,成为零售业务的默认模式。为了实现具有多个接触点的无缝购物体验,全渠道零售商承受着订单履行活动带来的巨额运营成本。此外,相关决策需要共同优化,以实现利润最大化。这一领域日益增长的实际重要性和学术文献的稀缺性提供了令人振奋的研究机会,这些机会将在广泛意义上产生直接影响。在最近全渠道零售创新的激励下,我们将调查以下三个密切相关的研究问题,这些问题在文献中尚未得到解决:1.延迟订单履行的价值是什么?2.零售商如何联合优化交付选项产品和订单履行决策?3.履行过程中的不灵活性如何影响零售商的定价和库存决策?我们的研究将提供使理论与商业实践保持一致的解决方案,并突出联合动态优化的好处和可行性。从理论上讲,我们的问题被建模为随机控制问题,很难以最优方式解决。我们计划提出易于实时实现并具有近乎最佳性能保证的算法。由于这些问题涉及以前从未研究过的新动力学,该项目广泛地贡献了随机控制和在线算法文献。五名HQP将获得运营和数据分析领域非常受欢迎的技能,这对于解决相关的现实问题以及在学术或行业职业生涯中取得成功至关重要。从实用的角度来看,这个项目及时解决了全渠道零售商面临的共同挑战,他们依赖复杂的物流网络来服务于有高服务要求的客户。我们的算法将使用真实数据进行测试,并有可能被零售业的行业合作伙伴(如亚马逊、甲骨文实验室和Insta)实施。在Z世代崛起和新冠肺炎疫情的影响下,消费者的购物习惯发生了根本性的变化。研究结果将有利于更广泛的零售业接受这些变化。这对加拿大零售业的潜在经济影响将是巨大的,因为即使收入略有改善1%,也可能转化为超过5B加元的额外销售额。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei, Yanzhe其他文献

Lei, Yanzhe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei, Yanzhe', 18)}}的其他基金

Real-time Dynamic Optimization for Omnichannel Retailers
全渠道零售商的实时动态优化
  • 批准号:
    RGPIN-2021-02973
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Dynamic Optimization for Omnichannel Retailers
全渠道零售商的实时动态优化
  • 批准号:
    DGECR-2021-00198
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Dynamic temperature measurement and real-time monitoring for characterising material formability during straining
动态温度测量和实时监控,用于表征应变期间材料的可成形性
  • 批准号:
    10089588
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative R&D
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
  • 批准号:
    2317399
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
  • 批准号:
    2220537
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Tackling real-world time series using dynamic neural networks
使用动态神经网络处理现实世界的时间序列
  • 批准号:
    23K16949
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
  • 批准号:
    2317398
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Developing a dynamic modeling framework for surveillance, prediction, and real-time resource allocation to reduce health disparities during Covid-19 and future pandemics
开发用于监测、预测和实时资源分配的动态建模框架,以减少 Covid-19 和未来大流行期间的健康差距
  • 批准号:
    10584876
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
ERI: An Adaptive Incremental Deep Learning Architecture for Real-Time Inference of RF Signals in Dynamic Spectrum Sharing Environments
ERI:一种自适应增量深度学习架构,用于动态频谱共享环境中射频信号的实时推理
  • 批准号:
    2138898
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Dynamic surveillance for antimicrobial resistance in tertiary care hospitals through real-time wastewater monitoring
通过实时废水监测动态监测三级医院的抗菌药物耐药性
  • 批准号:
    464452
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了