Development of Novel Multi-Task Prediction Methods for Large Scale Genomic Data
大规模基因组数据的新型多任务预测方法的开发
基本信息
- 批准号:RGPIN-2021-03530
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research focuses on developing novel statistical and computational methodologies and software for multi-task prediction problems and their application in the analysis of genomic data. Background: Tremendous genomic data are being generated by various high-throughput experimental technologies, such as Next Generation Sequencing. Common features of most genomic data are high dimensional (up to tens of thousands for gene expression data or up to millions for Genome-Wide Association Studies) and high correlation. Since those data usually have small and moderate sample sizes, ranging from hundreds to thousands, signals are sparse, creating challenges for finding important disease-associated genomic predictors. Traditional statistical methods are mainly designed for low dimensional data. And the popular deep learning requires a large sample to train the network to have better prediction performance. Therefore, for such data, novel methods based on statistical learning are in high demand. Particularly, there are gaps in developing multi-task learning methods, which simultaneously predict multiple research outcomes and select important genomic predictors from a large pool. Objectives: I recently developed a novel algorithm based on revising the well-known stacking algorithm and established that it outperforms the neural network and other popular statistical learning methods in genomic data for moderate sample sizes. I propose extending this work to handle other common types of outcomes and plan to incorporate the proposed methods into my previously developed publicly available R package, called MTPS. The software will become a unified and comprehensive software platform dealing with multi-task problems with high-dimensional correlated data. I will conduct the proposal through training highly qualified personnel (HQP) under the guidelines of equity, diversity, and inclusion. Impact: My software, MTPS, has been downloaded 4000+ times since released in February 2020. By incorporating the proposed methods, we will add new features to it to solve a broader range of problems. My novel methods and software will become one of the most popular tools for multi-task prediction in the future. I will make significant contributions to various subject areas by applying the proposed methods to solve real-world problems in health science and social science. For example, in collaboration with world-leading researchers at the University of British Columbia's medical school, I will apply the methods in biomarker discovery for various lung diseases. The identified biomarkers can be used to develop diagnosis test chips or as targets for drug development. In collaboration with economists, I will apply the methods to the US stock market's high-frequency trading data and build a model to predict multiple stocks' prices. I believe such applications will lead to substantial impacts and contribute to the development of Canadian Natural Sciences and Engineering.
我的研究重点是开发新的统计和计算方法和软件,用于多任务预测问题及其在基因组数据分析中的应用。背景:各种高通量实验技术,如下一代测序,正在产生大量的基因组数据。大多数基因组数据的共同特征是高维(基因表达数据高达数万,全基因组关联研究高达数百万)和高相关性。由于这些数据的样本量通常较小,从数百到数千不等,因此信号稀疏,为寻找与疾病相关的重要基因组预测因素带来了挑战。传统的统计方法主要是针对低维数据设计的。而流行的深度学习需要大量的样本来训练网络,以获得更好的预测性能。因此,对于这类数据,迫切需要基于统计学习的新方法。特别是,在开发多任务学习方法方面存在空白,这些方法可以同时预测多个研究结果并从大型池中选择重要的基因组预测因子。目标:我最近开发了一种基于修改著名的堆叠算法的新算法,并确定它在中等样本量的基因组数据中优于神经网络和其他流行的统计学习方法。我建议扩展这项工作来处理其他常见类型的结果,并计划将建议的方法合并到我之前开发的公开可用的R包中,称为MTPS。该软件将成为处理高维相关数据的多任务问题的统一、全面的软件平台。我将在公平、多元、包容的原则下,通过培养高素质人才(HQP)来实施提案。影响:自2020年2月发布以来,我的软件MTPS已经被下载了4000多次。通过合并提出的方法,我们将为其添加新功能,以解决更广泛的问题。我的新方法和软件将成为未来多任务预测最流行的工具之一。通过将提出的方法应用于解决健康科学和社会科学中的现实问题,我将对各个学科领域做出重大贡献。例如,我将与英属哥伦比亚大学医学院的世界领先的研究人员合作,将这些方法应用于各种肺部疾病的生物标志物发现。鉴定出的生物标志物可用于开发诊断测试芯片或作为药物开发的靶标。我将与经济学家合作,将这些方法应用于美国股市的高频交易数据,并建立一个模型来预测多只股票的价格。我相信这样的应用将产生重大影响,并为加拿大自然科学与工程的发展做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xing, Li其他文献
Microwave Heating Effect on Diamond Samples of Nitrogen-Vacancy Centers.
- DOI:
10.1021/acsomega.2c04232 - 发表时间:
2022-09-06 - 期刊:
- 影响因子:4.1
- 作者:
Wang, Zheng;Zhang, Jintao;Feng, Xiaojuan;Xing, Li - 通讯作者:
Xing, Li
An approach to the analysis of heat and mass transfer characteristics in indirect evaporative cooling with counter flow configurations
- DOI:
10.1016/j.ijheatmasstransfer.2017.01.019 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:5.2
- 作者:
Wan, Yangda;Ren, Chengqin;Xing, Li - 通讯作者:
Xing, Li
Concentrations and source identification of priority polycyclic aromatic hydrocarbons in sediment cores from south and northeast Thailand.
- DOI:
10.1016/j.heliyon.2022.e10953 - 发表时间:
2022-10 - 期刊:
- 影响因子:4
- 作者:
Pongpiachan, Siwatt;Tipmanee, Danai;Choochuay, Chomsri;Deelaman, Woranuch;Iadtem, Natthapong;Wang, Qiyuan;Xing, Li;Li, Guohui;Han, Yongming;Hashmi, Muhammad Zaffar;Cao, Junji;Leckngam, Apichart;Poshyachinda, Saran - 通讯作者:
Poshyachinda, Saran
A membrane-less molten hydroxide direct carbon fuel cell with fuel continuously supplied at low temperatures: A modeling and experimental study
- DOI:
10.1016/j.apenergy.2022.119585 - 发表时间:
2022-07-22 - 期刊:
- 影响因子:11.2
- 作者:
Dong, Yuanxing;Xing, Li;Liu, Jinrong - 通讯作者:
Liu, Jinrong
Spatial Configuration of Hepatitis E Virus Antigenic Domain
- DOI:
10.1128/jvi.00657-10 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Xing, Li;Wang, Joseph C.;Cheng, R. Holland - 通讯作者:
Cheng, R. Holland
Xing, Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xing, Li', 18)}}的其他基金
Development of Novel Multi-Task Prediction Methods for Large Scale Genomic Data
大规模基因组数据的新型多任务预测方法的开发
- 批准号:
RGPIN-2021-03530 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Development of Novel Multi-Task Prediction Methods for Large Scale Genomic Data
大规模基因组数据的新型多任务预测方法的开发
- 批准号:
DGECR-2021-00377 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
- 批准号:
471667-2015 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Postdoctoral Fellowships
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
- 批准号:
471667-2015 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Postdoctoral Fellowships
Developing new statistical methods to map the longitudinal brain degeneration experienced by HIV-infected patients
开发新的统计方法来绘制艾滋病毒感染者经历的纵向脑退化图
- 批准号:
471667-2015 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Postdoctoral Fellowships
Bayesain modeling for gene-environment interaction studies in presence of measurement error
存在测量误差的情况下基因-环境相互作用研究的贝叶斯模型
- 批准号:
378815-2009 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bayesain modeling for gene-environment interaction studies in presence of measurement error
存在测量误差的情况下基因-环境相互作用研究的贝叶斯模型
- 批准号:
378815-2009 - 财政年份:2010
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bayesain modeling for gene-environment interaction studies in presence of measurement error
存在测量误差的情况下基因-环境相互作用研究的贝叶斯模型
- 批准号:
378815-2009 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel Method for Producing Pharmaceutical Multi-Phase Solid Using Melt Crystallization
开发利用熔融结晶生产药物多相固体的新方法
- 批准号:
23KJ0860 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a multifaceted evaluation method for stress relief effects based on novel multi-biomarker analysis
基于新型多生物标志物分析开发压力缓解效果多方面评价方法
- 批准号:
23K06091 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A multi-process approach towards the development of novel Mg alloys
开发新型镁合金的多工艺方法
- 批准号:
RGPIN-2021-02449 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods for Development of Polygenic Scores in Multi-Ancestry Cohorts
多祖先队列中多基因评分开发的新统计方法
- 批准号:
10794931 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
The Development and Validation of a Novel, Multi-Technology Psychomotor Training Platform for a Decentralized Model of Simulation-Based Training: Application in Health Professions Simulation
新型多技术精神运动训练平台的开发和验证,用于基于模拟的训练分散模型:在健康专业模拟中的应用
- 批准号:
575953-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of Novel Multi-Task Prediction Methods for Large Scale Genomic Data
大规模基因组数据的新型多任务预测方法的开发
- 批准号:
RGPIN-2021-03530 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Development of Novel Therapies for Cardio-Renal Damages Based on Kidney Glomerulus-Specific Multi-Omics Analysis
基于肾小球特异性多组学分析开发心肾损伤新疗法
- 批准号:
22K16210 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel Statistical Methods for Development of Polygenic Scores in Multi-Ancestry Cohorts
多祖先队列中多基因评分开发的新统计方法
- 批准号:
10464189 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Development of a Novel Chiral Piperidine Construction Method Utilizing Multi-component Linkage Reactions and Total Synthesis of Alkaloids
利用多组分连接反应和生物碱全合成开发新型手性哌啶构建方法
- 批准号:
21K14620 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PREVENT CANCER PRECLINICAL DRUG DEVELOPMENT PROGRAM - A NOVEL MULTI-ANTIGEN VACCINE (TNBCVAX) TO PREVENT TRIPLE NEGATIVE BREAST CANCER
预防癌症临床前药物开发计划 - 预防三阴性乳腺癌的新型多抗原疫苗 (TNBCVAX)
- 批准号:
10503245 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:














{{item.name}}会员




