Data harmonization and synthesis for mediation and moderation analysis
用于中介和调节分析的数据协调和综合
基本信息
- 批准号:RGPIN-2021-03432
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research focuses on the development and evaluation of Bayesian methods for the analysis of mediation models and structural equations models (SEMs). This work falls under NSERC topic MS28, and is applied in the social, behavioral, and medical sciences. Scientific studies often examine intermediate variables that transmit the effect from one variable to another (mediators), and variables (moderators) that provide additional information about conditions in which effects occur. Advancing the field and using scientific findings to inform policy first requires a synthesis of findings from all relevant previous studies. There are three main obstacles to obtaining accurate estimates of effects in data synthesis: 1) the same parameter is not directly comparable between studies if there are differences in measurement instruments, target populations, covariates used in the analysis, and/or study procedures, 2) most data synthesis methods were developed for simple models that yield standardized mean differences for two groups, correlations, or regression coefficients, and there is a lack of empirically tested methods for synthesizing findings from more complex models (e.g., mediation models), and 3) the developments of methods for data synthesis have historically proceeded independently of developments of methods for data harmonization (equating scores on the same construct obtained using different measurement instruments and/or different response categories) and vice-versa. As of now there is no unified framework for data harmonization and data synthesis for mediation and moderation analyses. Therefore, the long-term objective of the proposed research program is to integrate data harmonization and data synthesis for SEMs in a single comprehensive statistical framework. The short-term objectives of the proposed research program are to: 1) Develop and test data harmonization methods that can accommodate various sources of between-study differences in measurement instruments 2) Create an integrated statistical framework for data harmonization and synthesis in mediation and moderation analyses Without methods to effectively synthesize findings from studies that examine mediators and moderators, existing research cannot be used for policy and decision making. This proposal is potentially ground-breaking because it describes the first integrated statistical framework for data harmonization and data synthesis for mediator and moderator effects. Mediators and moderators are examined in thousands of social science studies every year and the proposed methods have the potential to improve policy and decision-making based on findings in fields ranging from psychology to epidemiology and education research.
我的研究重点是用于中介模型和结构方程模型(SEM)分析的贝叶斯方法的发展和评估。这项工作属于NSERC主题MS28,并应用于社会、行为和医学科学。科学研究经常检查将影响从一个变量传递到另一个变量的中间变量(中介),以及提供有关影响发生条件的额外信息的变量(调节变量)。推进这一领域并利用科学发现为政策提供信息首先需要综合所有相关先前研究的结果。在数据合成中获得准确的效果估计有三个主要障碍:1)如果在测量工具、目标人群、分析中使用的协变量和/或研究程序方面存在差异,则相同的参数在研究之间不能直接比较;2)大多数数据合成方法是针对产生两组标准化平均差异、相关性或回归系数的简单模型开发的,并且缺乏用于合成来自较复杂模型(例如中介模型)的结果的经验证的方法,3)数据合成方法的发展历来独立于数据协调方法的发展(将使用不同测量工具和/或不同反应类别获得的同一结构的分数相等),反之亦然。到目前为止,还没有为调解和调解分析统一数据和综合数据的统一框架。因此,拟议研究方案的长期目标是将中小企业的数据协调和数据合成整合到一个单一的综合统计框架中。拟议研究计划的短期目标是:1)开发和测试数据协调方法,以适应研究之间测量工具差异的各种来源;2)为调解和缓和分析中的数据协调和综合创建一个综合统计框架,如果没有方法有效地综合审查调解人和主持人的研究结果,现有研究就不能用于政策和决策。这一提议可能具有开创性,因为它描述了第一个关于调解人和主持人效应的数据统一和数据合成的综合统计框架。每年在数千项社会科学研究中对调解人和主持人进行审查,拟议的方法有可能根据心理学、流行病学和教育研究等领域的研究结果改进政策和决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miocevic, Milica其他文献
Causal Mediation Effects in Single Case Experimental Designs
- DOI:
10.1037/met0000497 - 发表时间:
2022-05-12 - 期刊:
- 影响因子:7
- 作者:
Valente, Matthew J.;Rijnhart, Judith J. M.;Miocevic, Milica - 通讯作者:
Miocevic, Milica
The Distribution of the Product Explains Normal Theory Mediation Confidence Interval Estimation
- DOI:
10.1080/00273171.2014.903162 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.8
- 作者:
Kisbu-Sakarya, Yasemin;MacKinnon, David P.;Miocevic, Milica - 通讯作者:
Miocevic, Milica
Do Childcare Teachers Evaluate Children's Weight Status More Accurately Than Parents? A Brief Report.
- DOI:
10.1177/08901171231178272 - 发表时间:
2023-07 - 期刊:
- 影响因子:2.7
- 作者:
Gomes, Ana I.;Lemos, Rosa;Miocevic, Milica;Pereira, Ana I.;Barros, Luisa - 通讯作者:
Barros, Luisa
Sequential Bayesian Data Synthesis for Mediation and Regression Analysis.
- DOI:
10.1007/s11121-021-01256-1 - 发表时间:
2022-04 - 期刊:
- 影响因子:3.5
- 作者:
Wurpts, Ingrid C;Miocevic, Milica;MacKinnon, David P - 通讯作者:
MacKinnon, David P
Miocevic, Milica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miocevic, Milica', 18)}}的其他基金
Data harmonization and synthesis for mediation and moderation analysis
用于中介和调节分析的数据协调和综合
- 批准号:
RGPIN-2021-03432 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Data harmonization and synthesis for mediation and moderation analysis
用于中介和调节分析的数据协调和综合
- 批准号:
DGECR-2021-00382 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Biomarker Development for Neurodegenerative Diseases by Diffusion MRI Harmonization Method
通过扩散 MRI 协调方法开发神经退行性疾病生物标志物
- 批准号:
23H02865 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
The Role of Lipids in Alzheimer's Disease and Related Dementias among Black Americans: Examining Lifecouse Mechanisms
脂质在美国黑人阿尔茨海默病和相关痴呆中的作用:检查生命机制
- 批准号:
10643344 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Social and Dietary Determinants of Kidney Stone Risk
肾结石风险的社会和饮食决定因素
- 批准号:
10643740 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Build to LEAD – Building partnerships to Link the Exposome to Autoimmune Disease
构建引领 — 建立合作伙伴关系,将暴露组与自身免疫性疾病联系起来
- 批准号:
10871040 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别: