Unobtrusive Sleep Physiological Monitoring and Enhancement Technologies
不引人注目的睡眠生理监测和增强技术
基本信息
- 批准号:RGPIN-2021-03924
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sleep disorders and their accompanying health problems are among important health issues in Canada, and there is a need to develop improved technologies to objectively evaluate sleep, manage sleep, and monitor health status during sleep. Irregular sleep patterns have been linked to a higher risk of neurodegenerative disorders, cardiovascular disease, and cancer. Sleep problems affect one-in-two Canadian adults and their prevalence is higher in women and increases with age. In addition to its critical role in well-being and quality of life, sleep provides a unique baseline window into human body function at rest that can help characterize health and disease patterns. For example, it has been found that blood pressure and heartrate profiles during sleep are strongly associated with deaths, cardiovascular events, and progressive loss of renal function, independently of their daytime profiles. Moreover, many health-related events, such as stroke, may occur during sleep while we are unconscious leading to late diagnosis and treatment. While there exists medicine, supplements, and meditation therapies to improve sleep disorders, there has been little technological effort to improve and manage sleep and to monitor sleep physiology and health. The operation of most current physiological monitors relies on active interaction with user/expert, continuous usage of such monitors can be disturbing and disruptive to sleep, and the analysis of recorded data requires expert interpretation. There is a need for portable, unobtrusive, and inexpensive technologies that can continuously monitor and enhance sleep in real-world environments such as the home. The main goals of the proposed research are the design and development of 1) smart and unobtrusive intervention technologies for sleep enhancement and management, 2) automatic algorithms to aid in the analysis and interpretation of physiological data, overcome the intrinsic limitations of human perception and bias, estimate important physiological parameters, and detect and predict health-related issues, and 3) wearable and contactless technologies for continuous in-sleep physiological measurement without disturbing sleep. The proposed research program is expected to have a significant impact in the field of Biomedical Engineering and on Sleep Technologies. Novel techniques for unobtrusive physiological monitoring and sleep enhancement will be developed, including new wearable and contactless sensors, signal processing methods, and machine learning algorithms. The developed technologies are expected to have significant impact on quality of life of Canadians, particularly those affected by sleep problems, such as women and the elderly. Moreover, Doctoral and Master's students will be trained in interdisciplinary and collaborative research involving human subjects, and so will develop skills of value to the Canadian biomedical and wearable devices industries, the sleep research community, and healthcare.
在加拿大,睡眠障碍及其伴随的健康问题是重要的健康问题之一,需要开发改进的技术来客观评估睡眠、管理睡眠和监测睡眠期间的健康状态。不规律的睡眠模式与神经退行性疾病、心血管疾病和癌症的风险更高有关。每两个加拿大成年人中就有一个会受到睡眠问题的影响,女性的睡眠问题患病率更高,而且随着年龄的增长而增加。除了在幸福和生活质量方面的关键作用外,睡眠还提供了一个独特的基线窗口,可以了解人体在休息时的功能,这有助于描述健康和疾病模式。例如,人们已经发现,睡眠期间的血压和心率曲线与死亡、心血管事件和进行性肾功能丧失密切相关,与白天的曲线无关。此外,许多与健康相关的事件,如中风,可能会在我们昏迷时在睡眠中发生,导致诊断和治疗延迟。虽然有药物、补充剂和冥想疗法来改善睡眠障碍,但在改善和管理睡眠以及监测睡眠生理和健康方面几乎没有技术上的努力。目前大多数生理监护仪的操作依赖于与用户/专家的主动交互,连续使用这种监护仪可能会干扰和干扰睡眠,并且对记录数据的分析需要专家解释。需要便携、低调和廉价的技术来持续监控和增强家庭等真实环境中的睡眠。这项研究的主要目标是设计和开发1)智能和非侵入性的睡眠改善和管理干预技术,2)帮助分析和解释生理数据的自动算法,克服人类感知和偏见的内在限制,估计重要的生理参数,检测和预测与健康相关的问题,以及3)可穿戴和非接触式技术,在不干扰睡眠的情况下连续进行睡眠中的生理测量。拟议的研究计划预计将在生物医学工程领域和睡眠技术领域产生重大影响。将开发用于非侵入性生理监测和睡眠增强的新技术,包括新的可穿戴和非接触式传感器、信号处理方法和机器学习算法。预计开发的技术将对加拿大人的生活质量产生重大影响,特别是那些受到睡眠问题影响的人,如妇女和老年人。此外,博士生和硕士研究生将接受涉及人类对象的跨学科和协作研究方面的培训,因此将培养对加拿大生物医学和可穿戴设备行业、睡眠研究社区和医疗保健有价值的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Forouzanfar, Mohamad其他文献
Coefficient-Free Blood Pressure Estimation Based on Pulse Transit Time-Cuff Pressure Dependence
- DOI:
10.1109/tbme.2013.2243148 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:4.6
- 作者:
Forouzanfar, Mohamad;Ahmad, Saif;Bolic, Miodrag - 通讯作者:
Bolic, Miodrag
Oscillometric Blood Pressure Estimation: Past, Present, and Future.
- DOI:
10.1109/rbme.2015.2434215 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:17.6
- 作者:
Forouzanfar, Mohamad;Dajani, Hilmi R;Batkin, Izmail - 通讯作者:
Batkin, Izmail
Block-wise 2D kernel PCA/LDA for face recognition
- DOI:
10.1016/j.ipl.2010.06.006 - 发表时间:
2010-08-15 - 期刊:
- 影响因子:0.5
- 作者:
Eftekhari, Armin;Forouzanfar, Mohamad;Alirezaie, Javad - 通讯作者:
Alirezaie, Javad
Sleep Apnea Detection From Single-Lead ECG: A Comprehensive Analysis of Machine Learning and Deep Learning Algorithms
- DOI:
10.1109/tim.2022.3151947 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Bahrami, Mahsa;Forouzanfar, Mohamad - 通讯作者:
Forouzanfar, Mohamad
Toward a better noninvasive assessment of preejection period: A novel automatic algorithm for B-point detection and correction on thoracic impedance cardiogram
- DOI:
10.1111/psyp.13072 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Forouzanfar, Mohamad;Baker, Fiona C.;Kovacs, Gregory T. A. - 通讯作者:
Kovacs, Gregory T. A.
Forouzanfar, Mohamad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Forouzanfar, Mohamad', 18)}}的其他基金
Unobtrusive Sleep Physiological Monitoring and Enhancement Technologies
不引人注目的睡眠生理监测和增强技术
- 批准号:
RGPIN-2021-03924 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Unobtrusive Sleep Physiological Monitoring and Enhancement Technologies
不引人注目的睡眠生理监测和增强技术
- 批准号:
DGECR-2021-00249 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Launch Supplement
Noninvasive estimation of cardiac output using simultaneous electrocardiogram and oscillometric measurements
使用同步心电图和示波测量无创估计心输出量
- 批准号:
454018-2014 - 财政年份:2016
- 资助金额:
$ 2.77万 - 项目类别:
Postdoctoral Fellowships
Noninvasive estimation of cardiac output using simultaneous electrocardiogram and oscillometric measurements
使用同步心电图和示波测量无创估计心输出量
- 批准号:
454018-2014 - 财政年份:2015
- 资助金额:
$ 2.77万 - 项目类别:
Postdoctoral Fellowships
Noninvasive estimation of cardiac output using simultaneous electrocardiogram and oscillometric measurements
使用同步心电图和示波测量无创估计心输出量
- 批准号:
454018-2014 - 财政年份:2014
- 资助金额:
$ 2.77万 - 项目类别:
Postdoctoral Fellowships
相似海外基金
Unobtrusive Sleep Physiological Monitoring and Enhancement Technologies
不引人注目的睡眠生理监测和增强技术
- 批准号:
RGPIN-2021-03924 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Use of Physiological Signals to Detect and Monitor Obstructive Sleep Apnea in Children with Down Syndrome
使用生理信号检测和监测唐氏综合症儿童的阻塞性睡眠呼吸暂停
- 批准号:
575385-2022 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Construction and feature analysis of a model for predicting clinical outcomes of psychiatric disorders using sleep, behavioral, and physiological parameters.
使用睡眠、行为和生理参数预测精神疾病临床结果的模型的构建和特征分析。
- 批准号:
22H02992 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unobtrusive Sleep Physiological Monitoring and Enhancement Technologies
不引人注目的睡眠生理监测和增强技术
- 批准号:
DGECR-2021-00249 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Launch Supplement
Associations between the physiological consequences of sleep apnea and cerebral small vessel disease in community dwelling adults
社区居住成年人睡眠呼吸暂停的生理后果与脑小血管疾病之间的关联
- 批准号:
439405 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Studentship Programs
COVID-19 Continuity grant for: Multiple physiological inputs to optimise real-time biofeedback through artificial intelligence to improve sleep in insomniacs
COVID-19 连续性资助:通过人工智能优化实时生物反馈的多种生理输入,以改善失眠症患者的睡眠
- 批准号:
72067 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Feasibility Studies
Analyses of the physiological effects of REM sleep focusing on depression
快速眼动睡眠对抑郁症的生理影响分析
- 批准号:
20J21209 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Physiological sequences on tooth grinding under sleep-like states in animals
动物类睡眠状态下磨牙的生理序列
- 批准号:
20K18632 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sleep, Circadian Rhythms, and Dementia-Related Changes in the Human Brain - An Integrated Physiological, Magnetic Resonance Imaging, Cognitive, and Genomic Study of Adult Ontarians
睡眠、昼夜节律和痴呆相关的人脑变化——对安大略省成人的综合生理学、磁共振成像、认知和基因组研究
- 批准号:
420559 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Operating Grants
Differentiating Narcolepsy from Sleep Deprivation Syndrome with a Physiological Approach Applying Time-Frequency Analysis
应用时频分析的生理学方法区分发作性睡病和睡眠剥夺综合征
- 批准号:
20K15886 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists