Preference-Based Combinatorial Optimization

基于偏好的组合优化

基本信息

  • 批准号:
    RGPIN-2021-04109
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Preference-Based Combinatorial Optimization refers to those real-world applications where we look for one or more solutions meeting a set of constraints, optimizing some objectives, and satisfying a set of preferences as much as possible. Preferences include those elicited from the decision maker to balance between conflicting objectives, which results in a Pareto optimal set of a manageable size. Constraints and preferences often come with uncertainty due to lack of knowledge, missing or incorrect information, or variability caused by external events. Moreover, the problem modeling phase is a tedious task requiring strong expertise and a significant background in constraint programming and Artificial Intelligence (AI). To address the above challenges, we propose a methodology based on the Constraint Satisfaction Problem (CSP) paradigm, and graphical models for preference representation. More precisely, hard constraints (corresponding to relations that can be satisfied or violated) will be represented through a CSP network. This two-level notion of satisfiability can be generalized to multiple levels, called soft constraints, to capture quantitative preferences and objectives. Graphical models, including the Conditional Preference network (CP-net) and the Lexicographic Preference trees (LP-trees) will be used to represent qualitative and conditional preferences. UCP-nets, Generalized Additive Independence networks (GAI-nets), and Weighted CP-nets (WCP-nets) will be chosen as alternatives for expressing utilities and costs. To express the relative importance between variables, we will rely on the Tradeoffs-enhanced Conditional Preference Network (TCP-net). Dealing with uncertainty will be expressed through both the probability and the possibility theories. These two theories are complementary and do not model the same facet of uncertainty.  To overcome the challenge with the modeling part, we will consider two learning mechanisms based on human-centric AI. In the first one, we will adopt active learning using membership queries, where examples are provided to the user to classify as positive or negative. In the second mechanism, learning is done in a passive mode from historical data.  The latter can be relevant for applications such as scheduling, where past available schedules are used as positive examples to learn from. Following a human-in-the-loop process, feedback data will be collected from a decision-maker in order to address noisy information and make the necessary adjustments to the learned model.  To solve a given optimization problem represented with the above models, we will use both exact methods and metaheuristics. The former will include variants of the backtrack search where constraint propagation and variable ordering heuristics are used to improve its practice efficiency. Metaheuristics are capable of tackling hard-to-solve applications by compromising solution quality for scalability and time efficiency.
基于偏好的组合优化指的是那些现实世界的应用程序,在这些应用程序中,我们寻找满足一组约束、优化一些目标并尽可能满足一组偏好的一个或多个解决方案。偏好包括决策者为平衡相互冲突的目标而产生的偏好,这导致了可管理规模的帕累托最优集。由于缺乏知识、缺少或不正确的信息或由外部事件引起的可变性,约束和偏好往往伴随着不确定性。此外,问题建模阶段是一项繁琐的任务,需要很强的专业知识和在约束规划和人工智能(AI)方面的重要背景。为了解决上述挑战,我们提出了一种基于约束满足问题(CSP)范式的方法,以及偏好表示的图形模型。更准确地说,硬约束(对应于可以满足或违反的关系)将通过CSP网络表示。这种可满足性的两级概念可以推广到多个级别,称为软约束,以捕获定量偏好和目标。图形模型,包括条件偏好网络(CP-net)和词典偏好树(LP-trees)将用于表示定性和条件偏好。ucp网络、广义可加性独立网络(GAI-nets)和加权cp网络(WCP-nets)将被选择作为表示效用和成本的替代方案。为了表达变量之间的相对重要性,我们将依赖于权衡增强的条件偏好网络(TCP-net)。对不确定性的处理将通过概率论和可能性理论来表达。这两种理论是互补的,并不模拟不确定性的同一方面。为了克服建模部分的挑战,我们将考虑基于以人为中心的AI的两种学习机制。在第一种方法中,我们将使用隶属度查询采用主动学习,其中向用户提供示例来分类为积极或消极。在第二种机制中,学习是被动地从历史数据中完成的。后者可能与调度等应用程序相关,在这些应用程序中,过去可用的调度被用作学习的积极示例。在人在循环过程中,将从决策者那里收集反馈数据,以处理有噪声的信息,并对学习的模型进行必要的调整。为了解决用上述模型表示的给定优化问题,我们将同时使用精确方法和元启发式方法。前者将包括回溯搜索的变体,其中使用约束传播和变量排序启发式来提高其实践效率。元启发式能够通过牺牲解决方案的质量来实现可伸缩性和时间效率,从而解决难以解决的应用程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mouhoub, Malek其他文献

Variable ordering and constraint propagation for constrained CP-nets
  • DOI:
    10.1007/s10489-015-0708-4
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Alanazi, Eisa;Mouhoub, Malek
  • 通讯作者:
    Mouhoub, Malek

Mouhoub, Malek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mouhoub, Malek', 18)}}的其他基金

Preference-Based Combinatorial Optimization
基于偏好的组合优化
  • 批准号:
    RGPIN-2021-04109
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference Reasoning in Constraint-based Systems
基于约束的系统中的偏好推理
  • 批准号:
    RGPIN-2016-05673
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference Reasoning in Constraint-based Systems
基于约束的系统中的偏好推理
  • 批准号:
    RGPIN-2016-05673
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference Reasoning in Constraint-based Systems
基于约束的系统中的偏好推理
  • 批准号:
    RGPIN-2016-05673
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Blockchain Technology for Electric Utility Consumption
电力消费区块链技术
  • 批准号:
    522818-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Preference Reasoning in Constraint-based Systems
基于约束的系统中的偏好推理
  • 批准号:
    RGPIN-2016-05673
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference Reasoning in Constraint-based Systems
基于约束的系统中的偏好推理
  • 批准号:
    RGPIN-2016-05673
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference-based (temporal) constraint solving under change and uncertainty
变化和不确定性下基于偏好的(时间)约束求解
  • 批准号:
    228156-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference-based (temporal) constraint solving under change and uncertainty
变化和不确定性下基于偏好的(时间)约束求解
  • 批准号:
    228156-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Preference-based (temporal) constraint solving under change and uncertainty
变化和不确定性下基于偏好的(时间)约束求解
  • 批准号:
    228156-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
  • 批准号:
    23K26368
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Peripheral Biomarker Based Combinatorial Early Diagnostics for Dementia (CombiDiag)
基于外周生物标志物的痴呆症组合早期诊断 (CombiDiag)
  • 批准号:
    EP/X025608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
  • 批准号:
    23H01674
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a combinatorial treatment of CAR-T therapy and liposome-based mRNA vaccination for pediatric solid tumors
开发针对儿科实体瘤的 CAR-T 疗法和基于脂质体的 mRNA 疫苗接种的组合疗法
  • 批准号:
    23K07247
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peripheral Biomarker Based Combinatorial Early Diagnostics for Dementia (CombiDiag)
基于外周生物标志物的痴呆症组合早期诊断 (CombiDiag)
  • 批准号:
    EP/X025578/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Developing Theory of Combinatorial Optimization Based on Matrix Representations
发展基于矩阵表示的组合优化理论
  • 批准号:
    22K17853
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preference-Based Combinatorial Optimization
基于偏好的组合优化
  • 批准号:
    RGPIN-2021-04109
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
A study on practical algorithms for combinatorial optimization based on approximate submodularity
基于近似子模性的组合优化实用算法研究
  • 批准号:
    22K17857
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring the exosome-nanosome combinatorial platform as a novel, universal, and ideal nanoparticle-based drug delivery system
探索外泌体-纳米体组合平台作为一种新颖、通用、理想的基于纳米颗粒的药物递送系统
  • 批准号:
    22K20705
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
COVID-19 Variant Network - Computer-aided discovery of synergistic drug combinations with Remdevisir for COVID-19 through mechanism-based drug repurposing and combinatorial organoid screening.
COVID-19 Variant Network - 通过基于机制的药物再利用和组合类器官筛选,计算机辅助发现与 Remdevisir 治疗 COVID-19 的协同药物组合。
  • 批准号:
    443064
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了