Mathematical and computational problems in energy driven pattern formation
能量驱动模式形成中的数学和计算问题
基本信息
- 批准号:RGPIN-2021-04114
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The configuration of any complex physical systems can be described by an associated energy. The dynamics then follow the gradient flow of this energy as the system dissipates energy. The first natural step in studying these systems is to analyze the critical points of the energy. For the systems of interest in this proposal these critical states and their energies depend on multiple parameters. There is generally some noise in the original physical systems being modeled thus systems generically evolve to global minimizers of the energy.? Most energy based models in the applied sciences involve parameters which often cannot be determined with absolute certainty. It is therefore important to study such models for whole parameter ranges, and in particular, to detect parameter values at which the system behaviour changes qualitatively. A first step towards accomplishing this goal is the understanding of the set of equilibria of the model and their respective energies. The long-term goal of my research program is the development of computational tools which can simulate complex mathematical models with accurate computed error bounds where every computation is an existence proof. Towards this goal I will work with HQP over the next five years on developing methods to address questions related to the Ohta-Kawasaki energy and related models from material science. The project will tie together various research objectives over three interconnected themes: Rigorous computation of phase diagrams; Extensions of the Ohta-Kawasaki energy and Confinement and geometric effects.
任何复杂的物理系统的结构都可以用关联能量来描述。然后,随着系统耗散能量,动力学遵循该能量的梯度流。研究这些系统的第一个自然步骤是分析能量的临界点。对于这个提议中感兴趣的系统,这些临界状态及其能量取决于多个参数。在被建模的原始物理系统中通常存在一些噪声,因此系统一般会进化到能量的全局最小值。在应用科学中,大多数基于能量的模型涉及的参数往往不能绝对确定。因此,重要的是要研究整个参数范围内的这种模型,特别是要检测系统行为定性变化的参数值。实现这一目标的第一步是理解模型的一组均衡及其各自的能量。我的研究计划的长期目标是计算工具的发展,可以模拟复杂的数学模型与精确计算的误差范围,其中每一个计算是一个存在的证明。为了实现这一目标,我将在未来五年内与HQP合作开发方法,以解决与大田川崎能源和材料科学相关模型相关的问题。该项目将在三个相互关联的主题上将各种研究目标联系在一起:相图的严格计算; Ohta-Kawasaki能量的扩展以及限制和几何效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Williams, John其他文献
Implementing maternal and newborn health quality of care standards in healthcare facilities to improve the adoption of respectful maternity care in Bangladesh, Ghana and Tanzania: a controlled before and after study.
- DOI:
10.1136/bmjgh-2023-012673 - 发表时间:
2023-11 - 期刊:
- 影响因子:8.1
- 作者:
Manu, Alexander;Pingray, Veronica;Billah, Sk Masum;Williams, John;Kilima, Stella;Yeji, Francis;Gohar, Fatima;Wobil, Priscilla;Karim, Farhana;Muganyizi, Projestine;Mogela, Deus;El Arifeen, Shams;Vandenent, Maya;Matin, Ziaul;Janda, Indeep;Zaka, Nabila;Hailegebriel, Tedbabe D. - 通讯作者:
Hailegebriel, Tedbabe D.
Relaunching the African Pollen Database: Abrupt change in climate and ecosystems
重新启动非洲花粉数据库:气候和生态系统的突变
- DOI:
10.22498/pages.28.1.26 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ivory, Sarah;Lezine, Anne-Marie;Grimm, Eric;Williams, John - 通讯作者:
Williams, John
Thrombocytopenic, thromboembolic and haemorrhagic events following second dose with BNT162b2 and ChAdOx1: self-controlled case series analysis of the English national sentinel cohort.
- DOI:
10.1016/j.lanepe.2023.100681 - 发表时间:
2023-09 - 期刊:
- 影响因子:20.9
- 作者:
Joy, Mark;Agrawal, Utkarsh;Fan, Xuejuan;Robertson, Chris;Anand, Sneha N.;Ordonez-Mena, Jose;Byford, Rachel;Goudie, Rosalind;Jamie, Gavin;Kar, Debasish;Williams, John;Marsden, Gemma L.;Tzortziou-Brown, Victoria;Sheikh, Sir Aziz;Hobbs, F. D. Richard;de Lusignan, Simon - 通讯作者:
de Lusignan, Simon
Effects of Wolf Presence on Daily Travel Distance of Range Cattle
- DOI:
10.1016/j.rama.2017.06.010 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:2.3
- 作者:
Clark, Patrick E.;Johnson, Douglas E.;Williams, John - 通讯作者:
Williams, John
Resilience to hydrological droughts in the northern Murray-Darling Basin, Australia
- DOI:
10.1098/rsta.2021.0296 - 发表时间:
2022-10-24 - 期刊:
- 影响因子:5
- 作者:
Grafton, R. Quentin;Chu, Long;Kingsford, Richard T.;Bino, Gilad;Williams, John - 通讯作者:
Williams, John
Williams, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Williams, John', 18)}}的其他基金
Mathematical and computational problems in energy driven pattern formation
能量驱动模式形成中的数学和计算问题
- 批准号:
RGPIN-2021-04114 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and simulation of singular phenomena
奇异现象的渐近和模拟
- 批准号:
327619-2006 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and simulation of singular phenomena
奇异现象的渐近和模拟
- 批准号:
327619-2006 - 财政年份:2009
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and simulation of singular phenomena
奇异现象的渐近和模拟
- 批准号:
327619-2006 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and simulation of singular phenomena
奇异现象的渐近和模拟
- 批准号:
327619-2006 - 财政年份:2007
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and simulation of singular phenomena
奇异现象的渐近和模拟
- 批准号:
327619-2006 - 财政年份:2006
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Lipid metabolism in plants
植物中的脂质代谢
- 批准号:
2001-2001 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Lipid metabolism in plants
植物中的脂质代谢
- 批准号:
2001-2001 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Lipid metabolism in plants
植物中的脂质代谢
- 批准号:
2001-2001 - 财政年份:2001
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Plant lipid metabolism - physiology and molecular biology
植物脂质代谢-生理学和分子生物学
- 批准号:
2001-1997 - 财政年份:2000
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and computational problems in energy driven pattern formation
能量驱动模式形成中的数学和计算问题
- 批准号:
RGPIN-2021-04114 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Using Computational Geometry to Solve Hard Mathematical Optimization Problems
使用计算几何解决困难的数学优化问题
- 批准号:
1634193 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Mathematical and computational analysis of moving boundary problems arising in snow and ice phenomena
冰雪现象中移动边界问题的数学和计算分析
- 批准号:
16H03953 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)