Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
基本信息
- 批准号:RGPIN-2018-06624
- 负责人:
- 金额:$ 8.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neutron stars are the densest objects known to mankind, with a mass 1.4 times that of the Sun packed in a sphere with only 20 km diameter. They contain, as their name suggests, mostly neutrons, one of the two constituents of atomic nuclei. Indeed, one could envisage them as giant nuclei, although with a mean density about thrice that of atomic nuclei, and a core density that is higher still.We do not yet know how matter behaves at these densities, being unable to reach such densities in laboratories and not yet smart enough to calculate the behaviour theoretically. Part of my programme aims at finding out, by measuring properties of neutron stars. For instance, it may be that in the core the neutrons are packed so closely together that they dissolve, in their constituent quarks. If this were to happen, it would make matter more compressible, and a neutron star would be smaller for a given mass. My general aim is to test hypotheses such as these by measuring neutron star masses and radii, or combinations of the two, such as a the moment of inertia.A more specific aim is to find the heaviest neutron star. This tests how matter behaves at high densities because as one increases the mass of neutron star, there will be a limit beyond which gravity becomes too strong and the object collapses and becomes a black hole. This limit depends on the compressibility of matter: the more compressible, the lower the maximum mass. The current best limit, which I helped determine, is 2.0 solar masses. I also found a possibly more massive neutron star, with 2.4 solar masses, and one of my goals is to either confirm or refute that.What makes me particularly optimistic about measure accurate properties in the coming period, is a new technique we have been developing, which we dubbed “scintillometry.” Here, we make measurements of radio pulsars at extremely high angular resolution by using the interstellar medium as a giant interferometer - relying on the fact that the interstellar medium slightly deflects radio emission, which thus reaches us through different paths. With this technique, we should be able to measure the orbital motion of the pulsars on the sky, allowing us to infer the orientation of the orbits which is needed to measure the mass as well as, in princple, precise distances, which will help pinpoint merging super-massive black holes from their gravitational waves.
中子星是人类已知的密度最大的天体,其质量是太阳的1.4倍,被包裹在一个直径只有20公里的球体中。 顾名思义,它们主要含有中子,中子是原子核的两种成分之一。 事实上,我们可以把它们想象成巨大的核,尽管它们的平均密度大约是原子核的三倍,而且核心密度还要更高,但我们还不知道物质在这些密度下的行为,因为我们无法在实验室中达到这样的密度,也没有足够的智慧从理论上计算出这种行为。 我计划的一部分是通过测量中子星的性质来找出答案。 例如,在核心中,中子可能紧密地聚集在一起,以至于它们溶解在它们的组成夸克中。 如果这发生了,它将使物质更可压缩,对于给定的质量,中子星星将更小。 我的总体目标是通过测量中子星星的质量和半径,或两者的组合,如惯性矩,来检验诸如此类的假设。更具体的目标是找到最重的中子星星。 这个实验测试了物质在高密度下的行为,因为随着中子星星质量的增加,会有一个极限,超过这个极限,引力会变得太强,物体会坍缩并成为黑洞。 这个极限取决于物质的可压缩性:可压缩性越强,最大质量越低。 目前最好的极限,我帮助确定,是2.0太阳质量。 我还发现了一颗质量可能更大的中子星星,有2.4个太阳质量,我的目标之一是证实或反驳这一点。让我对未来一段时间内测量精确性质特别乐观的是我们正在开发的一种新技术,我们称之为“能量测量”。 在这里,我们使用星际介质作为一个巨大的干涉仪,以极高的角分辨率测量射电望远镜-依赖于星际介质轻微偏转射电辐射的事实,从而通过不同的路径到达我们。 有了这项技术,我们应该能够测量天空中恒星的轨道运动,使我们能够推断出测量质量所需的轨道方向,以及原则上的精确距离,这将有助于从引力波中精确定位合并的超大质量黑洞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VanKerkwijk, Marten其他文献
VanKerkwijk, Marten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VanKerkwijk, Marten', 18)}}的其他基金
Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
- 批准号:
RGPIN-2018-06624 - 财政年份:2021
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
- 批准号:
RGPIN-2018-06624 - 财政年份:2020
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
- 批准号:
RGPIN-2018-06624 - 财政年份:2019
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
Probing Extreme (Astro)Physics with Neutron Stars
用中子星探索极限(天文)物理
- 批准号:
522732-2018 - 财政年份:2019
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Neutron stars and star & planet formation
中子星和恒星
- 批准号:
261946-2008 - 财政年份:2010
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
Neutron stars and star & planet formation
中子星和恒星
- 批准号:
261946-2008 - 财政年份:2009
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
Neutron stars and star & planet formation
中子星和恒星
- 批准号:
261946-2008 - 财政年份:2008
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
The demographic consequences of extreme weather events in Australia
澳大利亚极端天气事件对人口的影响
- 批准号:
DP240102733 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Discovery Projects
Attributable impacts from extreme weather events
极端天气事件的影响
- 批准号:
NE/Z000203/1 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Research Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
- 批准号:
2322117 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
- 批准号:
EP/X031624/1 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Research Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Resilience Against Extreme Weather Events
REU 网站:本科生抵御极端天气事件的研究经验
- 批准号:
2349250 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
- 批准号:
2319044 - 财政年份:2024
- 资助金额:
$ 8.89万 - 项目类别:
Standard Grant