Development of live cell FLIM-FRET to Characterize Protein-DNA Interactions During DNA Damage Repair

开发活细胞 FLIM-FRET 来表征 DNA 损伤修复过程中的蛋白质-DNA 相互作用

基本信息

  • 批准号:
    RGPIN-2020-06642
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our hypothesis is that in humans, age-onset reactive oxygen species increase is leading to and increased genotoxic stress on DNA, that must be repaired by either/or base excision repair of nucleotide excision repair pathways. During oxidative stress the inability to repair these DNA damage adducts, hence age-onset accumulation of damage, is the trigger of disease, linked to metabolic energy stresses due the poly-ADP ribose polymerization response and draining of nicotinamide adenine dinucleotide (NAD+) levels. Using our past success with biophotonic methods in live cells with Fluorescence Lifetime Imaging Measurement (FLIM) to quantify Forster Resonant Energy Transfer (FRET) with fluorescently labeled proteins, we seek to develop a real-time video speed observation of protein-protein and protein-DNA interactions relevant to DNA damage repair. DNA damage response and resolution take place in a temporal space of seconds, in proximal space of under 10nm to DNA damage, thus well within the space and time parameters of FLIM-FRET measure. We seek to develop new technology to directly observed protein spatial locations in the space of 100-10nm. The first aim is to transduce recombinant, pure proteins, directly fluorescently labelled into live cells. The goal of this aim is to transduce labelled proteins in live human cells at closely as possible to endogenous stoichiometry. This is possible by avoiding fluorescent protein fusions with much brighter fluorescent dye-labeled protein. At the DNA, we will either label DNA at sub-stoichiometric amounts of dye or use histone H2B-fluorescent protein fusions to label chromatin, testing potential FRET pairs to determine which pairs are optimal. We will compare this signal to fluorescent protein fusions. This is a universal technique for any DNA damage protein. The second aim is to develop an assay observe real-time DNA damage response in live cells. The system we will use are human HTERT immortalized cells. We will use a series of specific DNA damage agents to determine by localization to DNA which type of damage is most relevant for each disease protein tested. For recombinant protein, we will be using CryoEM quality pure proteins provided by collaborators or produced in-house. This localization over time will be captured and correlated to super-resolution imaging by structured illumination microscopy (SIM). This methodology will be applicable to any DNA repair factor. The final aim is to image DNA repair and cell metabolism in real time. We will make temporal observations at one frame per second, or less, with spatial observations under 100A to image the kinetics of disease protein recruitment to DNA damage and importantly, the resolution off chromatin. Within this context, we will test various DNA damage modulators. NAD levels will be measured by NAD fluorescent lifetime over the course of damage and repair.
我们的假设是,在人类中,年龄发作的活性氧增加导致DNA上的遗传毒性应激增加,这必须通过核苷酸切除修复途径的碱基切除修复来修复。在氧化应激期间,无法修复这些DNA损伤加合物,因此损伤的年龄发作性积累是疾病的触发因素,与由于聚ADP核糖聚合反应和烟酰胺腺嘌呤二核苷酸(NAD+)水平的排出引起的代谢能量应激有关。 利用我们过去在活细胞中使用荧光寿命成像测量(FLIM)的生物光子方法来量化荧光标记蛋白质的Forster共振能量转移(FRET)的成功,我们寻求开发与DNA损伤修复相关的蛋白质-蛋白质和蛋白质-DNA相互作用的实时视频速度观察。DNA损伤响应和分辨率发生在几秒钟的时间间隔内,距离DNA损伤的最近距离小于10 nm,因此完全在FLIM-FRET测量的空间和时间参数范围内。我们寻求开发新的技术来直接观察蛋白质在100- 10 nm空间的空间位置。 第一个目标是将重组的纯蛋白直接荧光标记到活细胞中。该目标的目的是以尽可能接近内源化学计量的方式在活的人类细胞中标记蛋白质。这是可能的,通过避免荧光蛋白融合更明亮的荧光染料标记的蛋白质。在DNA上,我们将以亚化学计量的染料量标记DNA,或者使用组蛋白H2 B-荧光蛋白融合物标记染色质,测试潜在的FRET对以确定哪些对是最佳的。我们将比较这个信号与荧光蛋白融合。这是一种通用的技术,适用于任何DNA损伤蛋白。第二个目标是开发一种实时观察活细胞中DNA损伤反应的方法。我们将使用的系统是人HTRT永生化细胞。我们将使用一系列特定的DNA损伤剂,通过定位于DNA来确定哪种类型的损伤与测试的每种疾病蛋白最相关。对于重组蛋白,我们将使用由合作者提供或内部生产的CryoEM质量纯蛋白。随着时间的推移,这种定位将被捕获并与结构照明显微镜(SIM)的超分辨率成像相关。这种方法将适用于任何DNA修复因子。 最终目标是对DNA修复和细胞代谢进行真实的成像。我们将以每秒一帧或更少的速度进行时间观察,空间观察在100 A以下,以成像疾病蛋白质募集到DNA损伤的动力学,重要的是,染色质的分辨率。在此背景下,我们将测试各种DNA损伤调节剂。NAD水平将通过损伤和修复过程中的NAD荧光寿命来测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Truant, Ray其他文献

A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington's disease
  • DOI:
    10.1093/hmg/ddu460
  • 发表时间:
    2015-01-15
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Nath, Siddharth;Munsie, Lise N.;Truant, Ray
  • 通讯作者:
    Truant, Ray
A patient-derived cellular model for Huntington's disease reveals phenotypes at clinically relevant CAG lengths
  • DOI:
    10.1091/mbc.e18-09-0590
  • 发表时间:
    2018-11-15
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hung, Claudia Lin-Kar;Maiuri, Tamara;Truant, Ray
  • 通讯作者:
    Truant, Ray
Huntingtin N17 domain is a reactive oxygen species sensor regulating huntingtin phosphorylation and localization
  • DOI:
    10.1093/hmg/ddw234
  • 发表时间:
    2016-09-15
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    DiGiovanni, Laura F.;Mocle, Andrew J.;Truant, Ray
  • 通讯作者:
    Truant, Ray
Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity
  • DOI:
    10.1093/hmg/ddm217
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Atwal, Randy Singh;Xia, Jianrun;Truant, Ray
  • 通讯作者:
    Truant, Ray
Recent Microscopy Advances and the Applications to Huntington's Disease Research.
  • DOI:
    10.3233/jhd-220536
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Babi, Mouhanad;Neuman, Kaitlyn;Peng, Christina Y;Maiuri, Tamara;Suart, Celeste E;Truant, Ray
  • 通讯作者:
    Truant, Ray

Truant, Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Truant, Ray', 18)}}的其他基金

Development of live cell FLIM-FRET to Characterize Protein-DNA Interactions During DNA Damage Repair
开发活细胞 FLIM-FRET 来表征 DNA 损伤修复过程中的蛋白质-DNA 相互作用
  • 批准号:
    RGPIN-2020-06642
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Development of live cell FLIM-FRET to Characterize Protein-DNA Interactions During DNA Damage Repair
开发活细胞 FLIM-FRET 来表征 DNA 损伤修复过程中的蛋白质-DNA 相互作用
  • 批准号:
    RGPIN-2020-06642
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
基于多尺度三维重构与拓扑分析的种子休眠与发育调控机制研究
  • 批准号:
    32000558
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
核纤层蛋白维系染色体结构与调控基因表达的分子机理
  • 批准号:
    31970752
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
虚拟集群Live迁移关键技术研究
  • 批准号:
    61170004
  • 批准年份:
    2011
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial and Single Cell Transcriptomics Approach to Understand Neuron-Oligodendrocyte Communication in Human Synaptic Development
了解人类突触发育中神经元-少突胶质细胞通讯的空间和单细胞转录组学方法
  • 批准号:
    10646970
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
  • 批准号:
    10640520
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
EXAMINING THE ROLE OF BMAL1, A NOVEL MATERNAL FACTOR IN PREIMPLANTATION DEVELOPMENT
检查 BMAL1(植入前发育中的一种新母体因素)的作用
  • 批准号:
    10740754
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
IND Enabling Non-Clinical Development of E1v1.11, a Morpholino Anti-Sense Oligonucleotide for the treatment of Spinal Muscular Atrophy.
IND 促进 E1v1.11 的非临床开发,E1v1.11 是一种用于治疗脊髓性肌萎缩症的吗啉代反义寡核苷酸。
  • 批准号:
    10569744
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Dissecting the role of Six1 and its co-factors during calvarial bone and suture development
剖析 Six1 及其辅助因子在颅骨和缝线发育过程中的作用
  • 批准号:
    10664478
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Development of spatiotemporally-extended single-molecule live-cell imaging technique to understand cellular functions as molecular systems
开发时空扩展的单分子活细胞成像技术,以将细胞功能理解为分子系统
  • 批准号:
    23H02102
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of live-cell probes to investigate tubulin post-translational modifications in neuronal regeneration
开发活细胞探针来研究神经元再生中微管蛋白翻译后修饰
  • 批准号:
    10648255
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
Development of novel nanoelectro-incision methods for true live cell nanoendoscopy
开发用于真正活细胞纳米内窥镜的新型纳米电切割方法
  • 批准号:
    23K19200
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of the worlds first Live Cell Nanoscope
开发世界上第一台活细胞纳米镜
  • 批准号:
    10030379
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了