Universal Soldier: A deep neural net for unsupervised 3D segmentation of tomographic images of bones

Universal Soldier:用于骨骼断层图像无监督 3D 分割的深度神经网络

基本信息

  • 批准号:
    576736-2022
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The Universal Soldier Deep Net is an artificial convolutional neural net for image analysis. The Universal Soldier, or USDNet, will be the output of this collaborative project between Prof. Natalie Reznikov and Object Research Systems (ORS) Inc. (Montréal), whose product is the software Dragonfly for comprehensive 3D image analysis. The purpose is to design and train a deep artificial neural network (the Universal Soldier) that will be capable of unsupervised segmentation of 3D images of bones as acquired by various X-ray-based methods. Currently, image segmentation - i.e. the identification and accurate tagging of relevant features in 3D - is a bottleneck of bioimaging, largely because of the high degree of hierarchical complexity in biological objects (such as bones), together with the large footprint of accrued 3D data. Automated, unbiased segmentation of 3D datasets would abolish these limitations and increase the precision of quantitative image analysis, with high throughput. From 2020-22, we collected a vast library of 3D tomographic images of bones of various animals (including humans), acquired using X-ray computed tomography (CT) scanners, with resolutions ranging from 1 µm to 60 µm, and with a variety of naturally occurring artifacts. The library is currently structured as an SQL repository and contains about 2 TB of raw images, as well as expertly processed subsamples of raw data (training data, or "ground truth", about 5%). Having this library, as part of this proposed project we will now design and train the USDNet that will be able to recognize skeletal elements in any scan and produce unsupervised, high-fidelity automated segmentation. This Universal Soldier will become part of the image analysis software Dragonfly available to skeletal biologists and bioimaging researchers free of charge. This will popularize artificial intelligence-aided methodologies in the life sciences, will make quantitative 3D image analysis fast, streamlined and immune to cognitive biases. Like self-driving cars have become a reality today, automated segmentation using a pre-trained Universal Soldier Deep Net we believe will transform bioimaging tomorrow.
Universal Soldier Deep Net是一种用于图像分析的人工卷积神经网络。Universal Soldier或USDNet将是Natalie Reznikov教授和Object Research Systems(ORS)Inc.之间合作项目的成果。(蒙特利尔),其产品是用于全面3D图像分析的软件Dragonfly。其目的是设计和训练一个深度人工神经网络(通用士兵),该网络将能够对通过各种基于X射线的方法获得的骨骼3D图像进行无监督分割。 目前,图像分割-即3D中相关特征的识别和准确标记-是生物成像的瓶颈,这主要是因为生物对象(例如骨骼)的高度层次复杂性以及累积的3D数据的大足迹。 3D数据集的自动无偏分割将消除这些限制,并以高通量提高定量图像分析的精度。从2020年至2022年,我们收集了大量使用X射线计算机断层扫描(CT)扫描仪获取的各种动物(包括人类)骨骼的三维断层扫描图像库,分辨率从1 µm到60 µm不等,并带有各种自然产生的伪影。 该库目前的结构是一个SQL存储库,包含大约2 TB的原始图像,以及经过专业处理的原始数据子样本(训练数据,或“地面实况”,约5%)。 有了这个库,作为这个拟议项目的一部分,我们现在将设计和训练USDNet,它将能够在任何扫描中识别骨骼元素,并产生无监督的高保真自动分割。 这个通用士兵将成为图像分析软件Dragonfly的一部分,免费提供给骨骼生物学家和生物成像研究人员。 这将在生命科学中推广人工智能辅助方法,使定量3D图像分析快速,简化并免受认知偏见的影响。就像自动驾驶汽车今天已经成为现实一样,使用预先训练的通用士兵深度网络进行自动分割,我们相信明天将改变生物成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reznikov, NatalieN其他文献

Reznikov, NatalieN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reznikov, NatalieN', 18)}}的其他基金

Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
  • 批准号:
    571519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants

相似海外基金

Black Soldier Fly Pilot Trial - Innovative Black Soldier Fly (BSF) Micro Farm (MF) Project, reclaiming waste feed inputs and converting it into proteins for animal feed
黑水虻试点试验 - 创新的黑水虻 (BSF) 微型农场 (MF) 项目,回收废弃饲料投入并将其转化为动物饲料的蛋白质
  • 批准号:
    10071795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
Multiply and Prosper: Increasing the Productivity of a Black Soldier Fly Genetics Multiplication Facility
繁殖与繁荣:提高黑水虻遗传繁殖设施的生产力
  • 批准号:
    83001762
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Innovation Loans
Constructing the Early Modern Soldier: Military Masculinity and Violence in the British Imagination, 1560-1660
塑造早期现代士兵:英国想象中的军事男子气概和暴力,1560-1660
  • 批准号:
    2887267
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Nutritional-enhancement of waste and Black Soldier Fly Meal (BSFLM) to make the UK a world-leader in BSFLM industry economics
废物和黑水兵蝇餐 (BSFLM) 的营养强化使英国成为 BSFLM 产业经济的世界领先者
  • 批准号:
    10073997
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
Black Soldier Fly (BSF) technology recycles food waste into a new source of animal feed (i.e. BSF larvae)
黑水虻 (BSF) 技术将食物垃圾回收为新的动物饲料来源(即 BSF 幼虫)
  • 批准号:
    2718183
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
  • 批准号:
    567175-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Transforming garbage into gold: development of experimental tools to study nutritional dynamics of black soldier fly larvae (Hermetia illuscens Linnaeus 1758).
变垃圾为黄金:开发实验工具来研究黑水虻幼虫(Hermetia illuscens Linnaeus 1758)的营养动态。
  • 批准号:
    RGPIN-2018-06642
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
The Material Soldier: Cultures of Consumerism and the GIs' Search for Identity in Vietnam
物质士兵:消费主义文化和大兵在越南寻找身份
  • 批准号:
    2742307
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Breeding super black soldier flies at scale for sustainable food production
大规模培育超级黑水虻以实现可持续粮食生产
  • 批准号:
    LP210301250
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Linkage Projects
Transforming garbage into gold: development of experimental tools to study nutritional dynamics of black soldier fly larvae (Hermetia illuscens Linnaeus 1758).
变垃圾为黄金:开发实验工具来研究黑水虻幼虫(Hermetia illuscens Linnaeus 1758)的营养动态。
  • 批准号:
    RGPIN-2018-06642
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了