Biological mechanisms of developmental stem cell plasticity
发育干细胞可塑性的生物学机制
基本信息
- 批准号:RGPIN-2021-03965
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stem cells are essential drivers of tissue development, maintenance, and regeneration. To ensure integrity in these processes, stem cells exhibit plasticity in the molecular identities and fate decisions they can adopt, which must be carefully controlled. Stem cell identity is best characterized at the level of gene and protein expression; though the impact of cellular organelles like lysosomes, which integrate multiple biological processes, is poorly understood. Lysosomes are well-established effectors of autophagy, the cell's "waste disposal system". Our understanding of the wider breadth of function of this organelle is still unfolding, though links to processes that are known to impact cell fate decisions have recently emerged, including metabolic, epigenetic, and cell signaling regulation. Thus, elucidating the stem cell populations and corresponding mechanisms that lysosomes impact would fill a critical knowledge gap and open up new avenues for discovery. I recently discovered that the initial specification of NSCs is marked by a sudden activation of lysosomes, which is not observed in parental pluripotent stem cells or developmentally related neural crest cells (NCCs). Subsequently, NSC populations exhibit heterogeneity in lysosome levels as they expand, mature, and begin making fate decisions to self-renew or differentiate. Suggesting a critical requirement for maintenance of `moderate' lysosome content, forced lysosome activation to `high' levels leads to dysfunctional NSC phenotypes and accelerated differentiation. Finely tuned lysosome activation thus appears to be critical for both NSC identity specification and normal lineage development. My team and I will test the hypothesis that lysosome expression dynamics regulate the adoption, maintenance, and plasticity of NSC identity. The over-arching goal of my research program is to elucidate the critical biological regulators of stem cell identity and their impacts on cell fate plasticity. Over the next five years my team will begin to investigate the role of lysosomes in stem cell identity specification and lineage development, using my established two-dimensional (2D) pluripotent and 3D organoid stem cell model systems. Mouse embryo explants will provide secondary validation. We will focus on NSCs and NCCs, but additional stem cell populations will also be investigated. OBJECTIVES: 1. Define the requirement for lysosomes in stem cell identity specification. 2. Elucidate the impacts of lysosome activation on lineage development. 3. Investigate the biological mechanisms by which lysosomes impact stem cell fate. This work will advance basic knowledge on lysosome biology and the processes that control stem cell identity and fate plasticity. It will also reveal tractable cellular factors for translational researchers developing tissue regeneration strategies and identifying biomarkers of stem cell integrity versus dysfunction.
干细胞是组织发育、维持和再生的基本驱动力。为了确保这些过程的完整性,干细胞在分子身份和命运决定方面表现出可塑性,必须仔细控制。干细胞身份最好在基因和蛋白质表达水平上表征;尽管对整合多种生物过程的细胞器(如溶酶体)的影响知之甚少。溶酶体是细胞自噬(细胞的“废物处理系统”)的公认效应器。我们对这种细胞器功能的更广泛的理解仍在展开,尽管最近出现了已知影响细胞命运决定的过程的联系,包括代谢,表观遗传和细胞信号调节。因此,阐明溶酶体影响的干细胞群体和相应机制将填补关键的知识空白,并开辟新的发现途径。 我最近发现,神经干细胞的初始特化以溶酶体的突然激活为标志,这在亲本多能干细胞或发育相关的神经嵴细胞(NCC)中没有观察到。随后,NSC群体在溶酶体水平上表现出异质性,因为它们扩增、成熟并开始做出自我更新或分化的命运决定。提示维持“中等”溶酶体含量的关键要求,强制溶酶体活化至“高”水平导致功能失调的NSC表型和加速分化。因此,微调的溶酶体活化似乎对NSC身份规范和正常谱系发育都至关重要。我和我的团队将检验溶酶体表达动态调节NSC身份的采纳、维持和可塑性的假设。我的研究计划的首要目标是阐明干细胞身份的关键生物调节因子及其对细胞命运可塑性的影响。在接下来的五年里,我的团队将开始研究溶酶体在干细胞身份规范和谱系发育中的作用,使用我建立的二维(2D)多能和3D类器官干细胞模型系统。小鼠胚胎外植体将提供二次验证。我们将重点关注NSC和NCC,但也将研究其他干细胞群体。目的:1.定义干细胞鉴别质量标准中溶酶体的要求。2.阐明溶酶体活化对谱系发育的影响。3.研究溶酶体影响干细胞命运的生物学机制。这项工作将推进溶酶体生物学和控制干细胞身份和命运可塑性的过程的基础知识。它还将揭示易处理的细胞因子,为翻译研究人员开发组织再生策略和识别干细胞完整性与功能障碍的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian, Lisa其他文献
Julian, Lisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian, Lisa', 18)}}的其他基金
Biological mechanisms of developmental stem cell plasticity
发育干细胞可塑性的生物学机制
- 批准号:
DGECR-2021-00268 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
Biological mechanisms of developmental stem cell plasticity
发育干细胞可塑性的生物学机制
- 批准号:
RGPIN-2021-03965 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Parent-to-child anxiety transmission in early childhood: Capturing in-the-moment mechanisms through emotion modeling and biological synchrony
幼儿期亲子焦虑传递:通过情绪建模和生物同步捕捉当下机制
- 批准号:
10458322 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Parent-to-child anxiety transmission in early childhood: Capturing in-the-moment mechanisms through emotion modeling and biological synchrony
幼儿期亲子焦虑传递:通过情绪建模和生物同步捕捉当下机制
- 批准号:
10652589 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Biological mechanisms of developmental stem cell plasticity
发育干细胞可塑性的生物学机制
- 批准号:
DGECR-2021-00268 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
Parent-to-child anxiety transmission in early childhood: Capturing in-the-moment mechanisms through emotion modeling and biological synchrony
幼儿期亲子焦虑传递:通过情绪建模和生物同步捕捉当下机制
- 批准号:
10414182 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Biological mechanisms of developmental stem cell plasticity
发育干细胞可塑性的生物学机制
- 批准号:
RGPIN-2021-03965 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Biological mechanisms and consequences of chlorate treatment on Pseudomonas aeruginosa chronic wound infections
氯酸盐治疗铜绿假单胞菌慢性伤口感染的生物学机制和后果
- 批准号:
9810001 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Molecular mechanisms of biological timers that determine developmental timing and environmental effects in Drosophila
决定果蝇发育时间和环境影响的生物定时器的分子机制
- 批准号:
17K07412 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biological roles and developmental pathway of burn-induced beige fat in humans
人类烧伤米色脂肪的生物学作用和发育途径
- 批准号:
9354485 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Biochemical and cell biological mechanisms of signal transduction through the Hedgehog pathway
Hedgehog 通路信号转导的生化和细胞生物学机制
- 批准号:
9070947 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Biochemical and cell biological mechanisms of signal transduction through the Hedgehog pathway
Hedgehog 通路信号转导的生化和细胞生物学机制
- 批准号:
9980196 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:














{{item.name}}会员




