Understanding how retinoic acid affects neurite outgrowth and synaptic function using invertebrate neurons.

了解视黄酸如何影响无脊椎动物神经元的神经突生长和突触功能。

基本信息

  • 批准号:
    RGPIN-2021-02825
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The main aim of my research program is to study the effects of the essential metabolite of Vitamin A, retinoic acid, on nervous system function. Retinoic acid is an important molecule for nervous system development and regeneration, as well as for learning and memory in the adult brain. We study these aspects of retinoid signaling in the central nervous system (CNS) of the invertebrate mollusc, Lymnaea stagnalis, which contains retinoids, retinoid receptors and retinoid metabolic enzymes. The retinoid receptors are nuclear receptors that generally act as ligand-activated transcription factors. However, it has now been well established, in both vertebrate and invertebrate CNS, that they can also exert important non-genomic effects during neurite outgrowth, and during synaptic plasticity, learning and memory. One of the main goals of my research program is to advance our knowledge and understanding of these non-genomic actions of retinoids. Unlike most vertebrate species, adult molluscan neurons can regenerate. Growth cones, located at the tips of growing neurites, guide these processes to their targets during axon pathfinding in development or regeneration. The growth cones of cultured regenerating motorneurons of the mollusc Lymnaea are large, robust and have been shown to respond with attractive turning responses to retinoids in a non-genomic manner. Over the next grant cycle, we will focus on the role of local protein synthesis in the growth cone responses to retinoids, with a focus on whether, and how, retinoid receptors are locally synthesized or trafficked, as well as the role of a specific microRNA, which can negatively regulate local protein synthesis during growth cone behaviour. We will also begin studying the axon pathfinding effects of retinoids in vivo. Another advantage of using molluscs to examine cellular effects of retinoids, is that many neurons located on the surface of the CNS are individually identifiable with known transmitters, synaptic partners and functions. We can culture and/or electrically record from single identified neurons involved in a specific behaviour, such as respiration or feeding. These behaviours can also be modified by training, and we have shown that retinoids and their receptors are important during memory formation. We have also determined that retinoids can rapidly modulate ion channels important for cell firing and neurotransmitter release. Over the next grant cycle, we will determine how retinoids affect ion channel activity and cell firing in a non-genomic manner, and whether this has direct effects on synaptic transmission. Our studies examining the effects of retinoids on synaptic changes and learning and memory, will range from analysis of single or synaptically paired cells in culture, to whole animal behaviour. These studies will highlight novel non-genomic actions of retinoic acid in the nervous system, during important processes such as neurite outgrowth and synaptic plasticity.
我的研究计划的主要目的是研究维生素A的必需代谢物维甲酸对神经系统功能的影响。视黄酸是神经系统发育和再生的重要分子,也是成人大脑学习和记忆的重要分子。我们研究了含类视黄酮、类视黄酮受体和类视黄酮代谢酶的无脊椎软体动物淋巴藻中枢神经系统(CNS)中类视黄酮信号的这些方面。类视黄醛受体是核受体,通常作为配体激活的转录因子。然而,现在已经确定,在脊椎动物和无脊椎动物的中枢神经系统中,它们也可以在神经突起生长,突触可塑性,学习和记忆过程中发挥重要的非基因组作用。我的研究项目的主要目标之一是提高我们对类维生素a的这些非基因组作用的认识和理解。与大多数脊椎动物不同,成年软体动物的神经元可以再生。生长锥位于生长的神经突的尖端,在发育或再生的轴突寻路过程中引导这些过程到达它们的目标。培养的软体动物lynaea再生运动神经元的生长锥大而健壮,并且已被证明以非基因组方式对类维甲酸做出有吸引力的转向反应。在下一个资助周期中,我们将重点关注局部蛋白质合成在生长锥对类视黄醇的反应中的作用,重点关注类视黄醇受体是否以及如何在局部合成或运输,以及在生长锥行为中可以负调控局部蛋白质合成的特定microRNA的作用。我们也将开始研究类维生素a在体内的轴突寻路效应。使用软体动物来检查类维甲酸的细胞效应的另一个优点是,位于中枢神经系统表面的许多神经元可以通过已知的递质、突触伙伴和功能单独识别。我们可以培养和/或电记录参与特定行为的单个已识别神经元,如呼吸或进食。这些行为也可以通过训练来改变,我们已经证明类维生素a及其受体在记忆形成过程中很重要。我们还确定类维生素a可以快速调节对细胞放电和神经递质释放重要的离子通道。在下一个资助周期,我们将确定类维生素a如何以非基因组方式影响离子通道活性和细胞放电,以及这是否对突触传递有直接影响。我们的研究考察类维生素a对突触变化和学习记忆的影响,范围将从单个或突触配对细胞的分析,到整个动物的行为。这些研究将突出维甲酸在神经系统中的新的非基因组作用,在神经突生长和突触可塑性等重要过程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spencer, Gaynor其他文献

Spencer, Gaynor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spencer, Gaynor', 18)}}的其他基金

Understanding how retinoic acid affects neurite outgrowth and synaptic function using invertebrate neurons.
了解视黄酸如何影响无脊椎动物神经元的神经突生长和突触功能。
  • 批准号:
    RGPIN-2021-02825
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Essential upgrade to a cell culture imaging and recording rig to study the role of retinoids (Vitamin A metabolites) in nervous system function
对细胞培养成像和记录装置进行必要升级,以研究类视黄醇(维生素 A 代谢物)在神经系统功能中的作用
  • 批准号:
    RTI-2022-00225
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Tools and Instruments
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Electrophysiological recording equipment for the study of neural networks during memory formation
用于研究记忆形成过程中神经网络的电生理记录设备
  • 批准号:
    RTI-2018-00375
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Tools and Instruments
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the effects of retinoic acid on neurite outgrowth and network plasticity
视黄酸对神经突生长和网络可塑性影响的机制
  • 批准号:
    RGPIN-2015-03780
  • 财政年份:
    2015
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the trophic and chemotropic effects of retinoic acid
视黄酸的营养和趋化作用的机制
  • 批准号:
    238373-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Studentship
Take Me and Make It Happen! How-to Books from the Ferguson Collection Glasgow, and Corresponding Holdings at the Herzog August Bibliothek Wolfenbüttel
带我去实现它!
  • 批准号:
    AH/Y007522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
  • 批准号:
    DE240100327
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了