A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling

溶酶体稳态和重塑的新细胞蛋白降解途径

基本信息

  • 批准号:
    RGPIN-2017-06652
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Although they may not be aware, everyone recycles to sustain life on earth at least from the perspective of a cell biologist. This is because all eukaryotic cells, including those that constitute you and I, rely on organelles called lysosomes to recycle biomaterials. Lysosomes recycle unneeded or damaged cellular components, and clear extracellular debris or pathogens by converting them into an important source of nutrients. As such, lysosome activity is needed to sustain metabolism when cells are starved, and to remove toxic biomaterials that accumulate in cells as they age. To function, these dynamic organelles rely on nutrient transporters to return products of catabolism (amino acids, lipids, nucleic acids) to the cell for reuse. But little is know about these transporters including how they are regulated or degraded. Until recently, when we discovered a new process in the model organism Saccharomyces cerevisiae called the IntraLumenal Fragment (ILF) pathway that selectively degrades lysosome transporters when damaged, in response to substrate levels, or by TOR-signaling an important mediator of cellular aging. This process selectively sorts transporters into an area of membrane that is internalized and degraded by lumenal hydrolases upon homotypic lysosome membrane fusion. But many open questions must be answered to comprehensively understand this novel process and its contribution(s) to cell physiology: How are transporters labeled and sorted for degradation? Does it occur during other fusion events? Can the ILF pathway degrade surface polytopic proteins? Does it contribute to longevity? Is this pathway conserved in metazoans? Primarily using S. cerevisiae and its vacuolar lysosome as models, I will complete five objectives to answer these questions and achieve my goal of understanding the molecular underpinnings of the ILF pathway, its physiology and how it may promote longevity in eukaryotic cells. This ambitious series of studies will be completed within 5 years by a motivated team of 1 postdoctoral fellow, 3 graduate students and an undergraduate student who will master cutting-edge methods in genetics, microscopy, biochemistry and cell biology - desirable skills needed to pursue careers in academia and industry. We anticipate that the ILF pathway will be equally critical to lysosomes as TOR- and TFEB-signaling, whereby it remodels membranes to accommodate changes in cell metabolism and other biology, akin to the importance of plasma membrane remodeling by endocytosis that underlies diverse physiology. Anticipated results will also help reveal the secret of nature's holy grail, and future work will translate this state-of-the-art knowledge into applications to prolong longevity, supporting development of intellectual property and related biotechnologies in Canada.
虽然他们可能没有意识到,但每个人都在努力维持地球上的生命,至少从细胞生物学家的角度来看。这是因为所有的真核细胞,包括那些组成你和我的细胞,都依赖于称为溶酶体的细胞器来回收生物材料。溶酶体回收不需要的或受损的细胞成分,并通过将其转化为重要的营养来源来清除细胞外碎片或病原体。因此,当细胞饥饿时,需要溶酶体活性来维持代谢,并去除随着细胞老化而积累在细胞中的有毒生物材料。为了发挥作用,这些动态细胞器依赖于营养转运蛋白将催化剂(氨基酸,脂质,核酸)的产物返回细胞进行再利用。但对这些转运蛋白知之甚少,包括它们是如何被调节或降解的。直到最近,当我们在模式生物酿酒酵母中发现了一个新的过程,称为腔内片段(ILF)途径,该途径在受损时选择性地降解溶酶体转运蛋白,以响应底物水平,或通过TOR信号传导细胞衰老的重要介质。这一过程选择性地将转运蛋白分类到膜的一个区域,该区域在同型溶酶体膜融合时被内腔水解酶内化和降解。但是,为了全面理解这一新的过程及其对细胞生理学的贡献,必须回答许多悬而未决的问题:转运蛋白是如何标记和分类降解的?它是否发生在其他融合事件中?ILF途径能降解表面多位蛋白吗?它有助于长寿吗?这种途径在后生动物中是保守的吗?利用S.作为模型,我将完成五个目标来回答这些问题,并实现我的目标,了解ILF途径的分子基础,其生理学以及它如何促进真核细胞的长寿。这一雄心勃勃的系列研究将在5年内由1名博士后研究员,3名研究生和一名本科生组成的积极团队完成,他们将掌握遗传学,显微镜,生物化学和细胞生物学的尖端方法-追求学术界和工业界职业所需的理想技能。我们预期ILF途径对溶酶体将与TOR-和TFEB-信号传导同样重要,由此它重塑膜以适应细胞代谢和其他生物学的变化,类似于基于不同生理学的内吞作用的质膜重塑的重要性。预期的结果还将有助于揭示自然界圣杯的秘密,未来的工作将把这种最先进的知识转化为延长寿命的应用,支持加拿大知识产权和相关生物技术的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett, Christopher其他文献

Electrochemical characterization of cefadroxil β-lactam antibiotic and Cu(II) complex formation
  • DOI:
    10.1016/j.jelechem.2019.04.077
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Sanz, Caroline G.;Serrano, Silvia H. P.;Brett, Christopher
  • 通讯作者:
    Brett, Christopher

Brett, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett, Christopher', 18)}}的其他基金

A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Defining the cellular architecture: intrinsic regulation of organelle size, shape and number
定义细胞结构:细胞器大小、形状和数量的内在调节
  • 批准号:
    403537-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Defining the cellular architecture: intrinsic regulation of organelle size, shape and number
定义细胞结构:细胞器大小、形状和数量的内在调节
  • 批准号:
    403537-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Laser scanning confocal microscope replacement for Concordia University
康考迪亚大学激光扫描共焦显微镜的替代品
  • 批准号:
    458446-2014
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Defining the cellular architecture: intrinsic regulation of organelle size, shape and number
定义细胞结构:细胞器大小、形状和数量的内在调节
  • 批准号:
    403537-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Defining the cellular architecture: intrinsic regulation of organelle size, shape and number
定义细胞结构:细胞器大小、形状和数量的内在调节
  • 批准号:
    403537-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER:Collaborative Research:Innovating technologies to inform synthetic plant metabolism through a new understanding of the cellular protein machinery
EAGER:合作研究:通过对细胞蛋白质机制的新理解,为合成植物代谢提供信息的创新技术
  • 批准号:
    1934566
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
EAGER:Collaborative Research:Innovating technologies to inform synthetic plant metabolism through a new understanding of the cellular protein machinery
EAGER:合作研究:通过对细胞蛋白质机制的新理解,为合成植物代谢提供信息的创新技术
  • 批准号:
    1934570
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Characterisation of new cellular signalling systems using novel, rapid, high resolution protein electrophoresis
使用新型、快速、高分辨率蛋白质电泳表征新的细胞信号系统
  • 批准号:
    1907426
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
A New Cellular Protein Degradation Pathway for Lysosome Homeostasis and Remodeling
溶酶体稳态和重塑的新细胞蛋白降解途径
  • 批准号:
    RGPIN-2017-06652
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of New Chemistry-based Methods for Protein Modification and Engineering That can be Applied under Crude Cellular Conditions
开发可在原始细胞条件下应用的基于化学的蛋白质修饰和工程新方法
  • 批准号:
    18205020
  • 财政年份:
    2006
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research Starter Grant: New Physics-Based Approaches to Predictive Protein Modeling, with Applications to Cellular Regulation
研究启动资金:基于物理的新预测蛋白质建模方法及其在细胞调节中的应用
  • 批准号:
    0302445
  • 财政年份:
    2003
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了