Engineering granular and metamaterial structures from biodegradable and biocompatible polyester elastomers
采用可生物降解和生物相容性聚酯弹性体设计颗粒和超材料结构
基本信息
- 批准号:RGPIN-2022-04164
- 负责人:
- 金额:$ 6.56万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Granular and metamaterial structures have revolutionized the development of miniaturized devices and microactuation, yet their use in tissue and organ-on-a-chip engineering is limited. In the previous DG cycle, using 3D stamping of UV-crosslinkable elastomers my group created complex structures such as AngioChip, injectable tissues and beating heart ventricles. However, their assembly required multiple photolithography steps, and a tedious layer-by-layer process requiring considerable manual skill. I hypothesize that engineering of granular and metamaterial structures from a new generation of biocompatible elastomers will solve the issue of material versatility and scalable processing, while providing new capabilities, such as material property patterning and porosity control, that are not realized using current bulk elastomeric approaches. In Project 1, we will synthesize new biocompatible elastomers for a range of tissue engineering and organ-on-a-chip applications. Prepolymer rheology, crosslinking time and mechanical properties will be tested. Using microfluidics, we will create monodisperse ink particles from the new elastomers, and stabilize them using partial UV curing. We will explore controlled release of biomolecules from the ink particles, functionalize them with conductive domains and test triggered-healing properties. In Project 2, we will advance scaffold technologies through 3D printing of tubular and metamaterial structures using jammed elastomer particle inks. We expect to achieve a significantly higher permeability to proteins of the new tubular structures compared to those 3D printed from bulk elastomers. Gradients of properties within the tubes will be created by combining ink particles of various properties in distinct spatial locations. We will 3D print a permeable yet stable vascular lumen for perfusion and release of angiogenic factors and exosomes. While cell laiden hydrogels can be 3D printed with high resolution, their structure deforms as cells remodel the matrix. Polymers are more stable, but they are inherently non-permeable. We will solve this problem by co-printing cells and hydrogels together with elastomeric ink particles to improve structure stability and embed the cells into the vessel wall. Conical metamaterial scaffolds will be created by 3D printing auxetic periodic lattice using new elastomer inks, to create a flexible structure that can uniquely support ventricle contraction. The described approach will enable us to increase throughput of structure production by 34,560 fold replacing a slow 3D stamping, requiring 72 hr for fabrication of one 1.5cm long tubular conduit, by a scalable 3D printing that requires only 7.2s. Project 1 and 2 are interconnected as polymers and elastomeric ink particles form Project 1, will be used to construct complex granular and metamaterial structures in Project 2. Three PhD, 2 MASc and 5 undergraduate students will be trained through the proposed studies.
颗粒和超材料结构彻底改变了微型化设备和微驱动的发展,但它们在组织和芯片上器官工程中的应用有限。在之前的DG周期中,我的团队使用可紫外线交联弹性体的3D冲压创建了复杂的结构,如血管芯片、可注射组织和跳动的心脏。然而,它们的组装需要多个光刻步骤,以及繁琐的逐层工艺,需要相当多的手工技能。我假设,从新一代生物兼容弹性体中设计颗粒和超材料结构将解决材料的通用性和可伸缩加工的问题,同时提供目前的本体弹性体方法无法实现的新功能,如材料特性图案化和孔隙率控制。在项目1中,我们将为一系列组织工程和芯片上器官应用合成新的生物兼容弹性体。将对预聚体的流变性、交联时间和机械性能进行测试。使用微流体,我们将从新的弹性体中创建单分散油墨颗粒,并使用部分UV固化来稳定它们。我们将探索生物分子从墨水颗粒中的受控释放,使用导电域对其进行功能化,并测试触发愈合性能。在项目2中,我们将通过使用堵塞的弹性体颗粒墨水对管状和超材料结构进行3D打印来推进脚手架技术。我们预计,与由主体弹性体打印的3D打印相比,新的管状结构对蛋白质的渗透性要高得多。管内的特性梯度将通过在不同的空间位置组合各种特性的墨水颗粒来创建。我们将3D打印一个可渗透但稳定的血管管腔,用于血管生成因子和外切体的灌流和释放。虽然细胞层水凝胶可以以高分辨率进行3D打印,但它们的结构会随着细胞对基质的重塑而变形。聚合物更稳定,但它们本质上是不透水的。我们将通过将细胞和水凝胶与弹性墨水颗粒共打印来解决这个问题,以提高结构稳定性并将细胞嵌入血管壁。锥形超材料支架将通过3D打印拉伸周期点阵使用新的弹性体墨水创建,以创建一种灵活的结构,可以独特地支持脑室收缩。所描述的方法将使我们能够将结构生产的产量提高34,560倍,通过只需要7.2秒的可扩展3D打印来取代缓慢的3D冲压,制造一个1.5厘米长的管状管道需要72小时。项目1和项目2作为聚合物和弹性体墨水颗粒相互连接,将在项目2中用于构建复杂的颗粒和超材料结构。通过拟议的研究,将培养3名博士、2名硕士和5名本科生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radisic, Milica其他文献
Spatiotemporal tracking of cells in tissue-engineered cardiac organoids.
- DOI:
10.1002/term.153 - 发表时间:
2009-03 - 期刊:
- 影响因子:3.3
- 作者:
Iyer, Rohin K.;Chui, Jane;Radisic, Milica - 通讯作者:
Radisic, Milica
Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering.
- DOI:
10.1088/1758-5090/acd8f4 - 发表时间:
2023-06-22 - 期刊:
- 影响因子:9
- 作者:
Wu, Qinghua;Zhang, Peikai;O'Leary, Gerard;Zhao, Yimu;Xu, Yinghao;Rafatian, Naimeh;Okhovatian, Sargol;Landau, Shira;Valiante, Taufik A.;Travas-Sejdic, Jadranka;Radisic, Milica - 通讯作者:
Radisic, Milica
A photolithographic method to create cellular micropatterns
- DOI:
10.1016/j.biomaterials.2006.04.028 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:14
- 作者:
Karp, Jeffrey M.;Yeo, Yoon;Radisic, Milica - 通讯作者:
Radisic, Milica
Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells
- DOI:
10.1002/jbm.a.32808 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:4.9
- 作者:
Rask, Fiona;Dallabrida, Susan M.;Radisic, Milica - 通讯作者:
Radisic, Milica
Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells
- DOI:
10.1016/j.actbio.2007.12.011 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:9.7
- 作者:
Shen, Yi Hao;Shoichet, Molly S.;Radisic, Milica - 通讯作者:
Radisic, Milica
Radisic, Milica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radisic, Milica', 18)}}的其他基金
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
Collaborative Research and Training Experience
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2020
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Equipment for biomechanical characterization of organ-on-a-chip devices
用于芯片器官装置生物力学表征的设备
- 批准号:
RTI-2021-00784 - 财政年份:2020
- 资助金额:
$ 6.56万 - 项目类别:
Research Tools and Instruments
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2020
- 资助金额:
$ 6.56万 - 项目类别:
Collaborative Research and Training Experience
Developing organ-on-a-chip models of COVID-19
开发 COVID-19 的器官芯片模型
- 批准号:
555054-2020 - 财政年份:2020
- 资助金额:
$ 6.56万 - 项目类别:
Alliance Grants
Additive manufacturing of organs-on-a-chip using biodegradable elastomeric polymers
使用可生物降解的弹性聚合物增材制造芯片器官
- 批准号:
506689-2017 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Strategic Projects - Group
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Collaborative Research and Training Experience
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Grants Program - Individual
Technology for high-fidelity podocyte cultivation
高保真足细胞培养技术
- 批准号:
501198-2016 - 财政年份:2018
- 资助金额:
$ 6.56万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 6.56万 - 项目类别:
Studentship
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Early Career Researcher Award
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
- 批准号:
24H00767 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A novel granular stress sensor for soil exploration
一种用于土壤勘探的新型颗粒应力传感器
- 批准号:
DP240101464 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Projects
A multi-scale theory for solid-granular transition due to fragmentation
碎裂引起的固体颗粒转变的多尺度理论
- 批准号:
DP240101206 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Discovery Projects
Re4Rail: AI and digital twin-based automated technology to real-time repair, reuse, recycle and repurpose railway granular media
Re4Rail:基于人工智能和数字孪生的自动化技术,可实时修复、再利用、回收和重新利用铁路颗粒介质
- 批准号:
EP/Y015401/1 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Fellowship
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
- 批准号:
EP/X028771/1 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Fellowship
Solids volume fraction of size-disperse dense granular flows
尺寸分散致密颗粒流的固体体积分数
- 批准号:
2905654 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Studentship
Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
- 批准号:
2228271 - 财政年份:2023
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant














{{item.name}}会员




