Technology for high-fidelity podocyte cultivation
高保真足细胞培养技术
基本信息
- 批准号:501198-2016
- 负责人:
- 金额:$ 2.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to develop a 3D cell culture system for podocytes in vitro. Podocytes are the primary cell type in the kidney glomerulus that are responsible for blood filtration and waste removal into the urine. Currently, there is a limited ability to study this cell type in vitro because standard culture conditions prevent the podocytes from acquiring structural and functional properties that are typical of the native cell. In preliminary studies, we developed a "bubble" surface that included spherical topographical features that mimic the curvature of the glomerulus for podocyte cultivation. In this project, we will use techniques from microfabrication, polymer science, biochemistry, fluid dynamics, and co-culture to create a highly elaborate cell culture system for podocytes, with the aim of generating in vitro-differentiated cells. The overarching hypothesis of this project is that the control of cell microenvironment via topographical and biochemical cues will enable podocytes to achieve a physiological phenotype in vitro as measured by the presence of slit diaphragm proteins, including nephrin and the adoption of a morphological profile more redolent of in vivo podocytes. The Specific Aims are: 1. Validate the culture system with topographical cues as a means to assess nephrin regulation through the use of model toxins and 2. Enhance podocyte phenotypic maturation using bioengineering. In Aim 1, we will first explore the use of laminin and collagen to develop a defined surface coating to facilitate podocyte attachment on "bubble surface". Regulation of nephrin expression in response to model toxins: doxorubicine, high glucose and puromycin amino nucleoside (PAN) will be explored. In Aim 2, we will optimize the curvature of the "bubble" surface for podocyte culture with respect to increasing nephrin expression, by using smaller diameter spheres. We will then create transwell inserts with a "bubble" membrane with tuneable permeability for co-culture of podocytes and endothelial cells. New IP will be disclosed to the University of Toronto and treated according to the current IP policy. Through the proposed studies, we expect to train at least 1 Post-doctoral fellow, 1 PhD student, 1 undergraduate student and 1 research associate, consistent with an 18 month time-line of the proposed project. The HQP will train in a highly interdisciplinary environment required for them to become leaders in biotechnology, pharmaceutical and high-tech engineering industry. This project will provide the first ever platform technology for high fidelity 3D culture of podocytes. These results will be exploited at GSK's Mississauga Research Center and around the world in discovery studies. Ultimately, economic and social benefit will be realized, in Canada, by compound screening in the developed cell cultivation platform, new jobs for scientists that will be trained on the use of this platform and growth in the pharmaceutical industry that will experience a more efficient and faster development process.******
我们建议建立一种足细胞的3D细胞体外培养系统。足细胞是肾小球中的主要细胞类型,负责血液过滤和排泄物排入尿液。目前,在体外研究这种细胞类型的能力有限,因为标准的培养条件阻止足细胞获得天然细胞典型的结构和功能特性。在初步研究中,我们开发了一种“气泡”表面,其中包括模仿肾小球弯曲的球状地形特征,用于足细胞培养。在这个项目中,我们将使用微制造、聚合物科学、生物化学、流体动力学和共培养技术来创建一个高度复杂的足细胞细胞培养系统,目的是在体外产生分化细胞。该项目的主要假设是,通过地形和生化线索控制细胞微环境将使足细胞能够在体外实现生理表型,这是通过存在裂隙隔膜蛋白(包括neaffin)和采用更具体内足细胞气味的形态来衡量的。具体目标是:1.用地形线索验证培养系统,作为一种手段,通过使用模型毒素来评估neparin的调节;2.利用生物工程促进足细胞表型成熟。在目标1中,我们将首先探索使用层粘连蛋白和胶原蛋白来开发一种明确的表面涂层,以促进足细胞附着在“气泡表面”上。对模型毒素:阿霉素、高糖和嘌呤霉素氨基核苷(PAN)的响应,将探讨neparin表达的调节。在目标2中,我们将通过使用更小直径的球体来优化足细胞培养的“气泡”表面的曲率,以增加neparin的表达。然后,我们将为足细胞和内皮细胞的共培养创造具有可调节渗透性的“气泡”膜的Transwell插入物。新的知识产权将向多伦多大学披露,并按照现行的知识产权政策处理。通过拟议的研究,我们预计将培养至少1名博士后研究员、1名博士生、1名本科生和1名研究助理,与拟议项目18个月的时间表保持一致。HQP将在高度跨学科的环境中进行培训,这是他们成为生物技术、制药和高科技工程行业领导者所必需的。该项目将为足细胞的高保真3D培养提供第一个平台技术。这些结果将被葛兰素史克的密西索加研究中心和世界各地的发现研究所利用。最终,在加拿大,通过在已开发的细胞培养平台中进行复合筛选,将为科学家提供使用该平台的培训的新工作,以及将经历更高效和更快的发展过程的制药行业的增长,将实现经济和社会效益。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radisic, Milica其他文献
Spatiotemporal tracking of cells in tissue-engineered cardiac organoids.
- DOI:
10.1002/term.153 - 发表时间:
2009-03 - 期刊:
- 影响因子:3.3
- 作者:
Iyer, Rohin K.;Chui, Jane;Radisic, Milica - 通讯作者:
Radisic, Milica
Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering.
- DOI:
10.1088/1758-5090/acd8f4 - 发表时间:
2023-06-22 - 期刊:
- 影响因子:9
- 作者:
Wu, Qinghua;Zhang, Peikai;O'Leary, Gerard;Zhao, Yimu;Xu, Yinghao;Rafatian, Naimeh;Okhovatian, Sargol;Landau, Shira;Valiante, Taufik A.;Travas-Sejdic, Jadranka;Radisic, Milica - 通讯作者:
Radisic, Milica
A photolithographic method to create cellular micropatterns
- DOI:
10.1016/j.biomaterials.2006.04.028 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:14
- 作者:
Karp, Jeffrey M.;Yeo, Yoon;Radisic, Milica - 通讯作者:
Radisic, Milica
Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells
- DOI:
10.1002/jbm.a.32808 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:4.9
- 作者:
Rask, Fiona;Dallabrida, Susan M.;Radisic, Milica - 通讯作者:
Radisic, Milica
Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells
- DOI:
10.1016/j.actbio.2007.12.011 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:9.7
- 作者:
Shen, Yi Hao;Shoichet, Molly S.;Radisic, Milica - 通讯作者:
Radisic, Milica
Radisic, Milica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radisic, Milica', 18)}}的其他基金
Engineering granular and metamaterial structures from biodegradable and biocompatible polyester elastomers
采用可生物降解和生物相容性聚酯弹性体设计颗粒和超材料结构
- 批准号:
RGPIN-2022-04164 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Collaborative Research and Training Experience
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
Equipment for biomechanical characterization of organ-on-a-chip devices
用于芯片器官装置生物力学表征的设备
- 批准号:
RTI-2021-00784 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Research Tools and Instruments
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Collaborative Research and Training Experience
Developing organ-on-a-chip models of COVID-19
开发 COVID-19 的器官芯片模型
- 批准号:
555054-2020 - 财政年份:2020
- 资助金额:
$ 2.6万 - 项目类别:
Alliance Grants
Additive manufacturing of organs-on-a-chip using biodegradable elastomeric polymers
使用可生物降解的弹性聚合物增材制造芯片器官
- 批准号:
506689-2017 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
Strategic Projects - Group
Training program in organ-on-a-chip engineering and entrepreneurship (TOeP)
芯片器官工程和创业培训项目(TOeP)
- 批准号:
482073-2016 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
Collaborative Research and Training Experience
Biomaterial processing for organ-on-a-chip engineering
用于芯片器官工程的生物材料加工
- 批准号:
RGPIN-2015-05952 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
- 批准号:
2333837 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
CAREER: Single-Fidelity vs. Multi-Fidelity Computer Experiments: Unveiling the Effectiveness of Multi-Fidelity Emulation
职业:单保真度与多保真度计算机实验:揭示多保真度仿真的有效性
- 批准号:
2338018 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Continuing Grant
eVTOL multi-fidelity hybrid design and optimization for low noise and high aerodynamic performance
eVTOL 多保真混合设计和优化,实现低噪音和高空气动力学性能
- 批准号:
10102278 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
EU-Funded
SBIR Phase I: High Fidelity Climate Simulation Powered by Generative Adversarial Networks
SBIR 第一阶段:由生成对抗网络提供支持的高保真气候模拟
- 批准号:
2335370 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
- 批准号:
2327379 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Standard Grant
音響および映像における「忠実性(fidelity)」の再検討
重新考虑音频和视频的“保真度”
- 批准号:
23K25288 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inferring epithelial tissue mechanics through data-efficient multi-fidelity modelling
通过数据高效的多保真度建模推断上皮组织力学
- 批准号:
BB/Y514020/1 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Research Grant
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23K26488 - 财政年份:2024
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)