Dendritic Computation and the Neural Code
树突计算和神经代码
基本信息
- 批准号:RGPIN-2017-06872
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
If one connects loudspeakers to an electrode implanted in brain cells, one would hear a rough, crackling and apparently unstructured sound. Is this noise a reflection of intrinsic imprecisions of an organic form of information processing or, rather, is it the result of an unknown and perhaps highly optimized way of encoding information? At the center of neuroscience research lies this problem of neural coding. It has become clear that peripheral nerves code information streaming from the senses in their spiking rate. Neurons within the hierarchical structure of the neocortex, however, constantly combine information of two different natures: bottom-up information coming more directly from the senses and top-down information coming from internal sources. Therefore, we propose a simple reformulation of the neural coding problem and ask the general question: How can a single population of neurons encode two streams of information simultaneously? Recent experimental evidence point to a pivotal role of dendrites in answering this question.Using numerical simulations of neocortical networks, this grant will (1) determine the role of dendrite-dependent bursting for representing top-down and bottom-up information simultaneously. In addition, the simulations will be used to (2) investigate the role of inhibitory connection motifs to optimize the bursting neural code. Lastly, we will (3) develop statistical data analysis methods to facilitate experimental investigations of dendrite-dependent burst coding.The most powerful machine learning method of today, deep learning, was inspired by the hierarchical structure of the neocortex. By outlining the rules for neural coding in a hierarchy, the proposed work can inspire efficient implementations of signal processing algorithms. In addition, understanding the neural code used by the neocortex is essential to the analysis of biomedical data. To single out a possible area of application, we note that the improvement of brain-machine interface technology strongly depends on novel decoding algorithms of the type discussed in this proposal. Therefore, our novel approach to the problem of neural coding can lead to valuable technologies.
如果将扬声器连接到植入脑细胞的电极上,人们会听到一种粗糙的、噼啪作响的、明显无结构的声音。这种噪音是反映了信息处理的有机形式的内在不精确性,还是一种未知的,也许是高度优化的信息编码方式的结果?神经科学研究的中心是神经编码问题。很明显,周围神经以其尖峰速率编码来自感官的信息流。然而,在新皮层的层级结构中,神经元不断地将两种不同性质的信息联合收割机结合起来:自下而上的信息更直接地来自感官,而自上而下的信息来自内部来源。因此,我们提出了一个简单的神经编码问题的重新表述,并提出了一个普遍的问题:一个单一的神经元群体如何同时编码两个信息流?最近的实验证据指出树突在回答这个问题中扮演着关键的角色。使用新皮层网络的数值模拟,本基金将(1)确定树突依赖的爆发在同时表示自上而下和自下而上信息中的作用。此外,模拟将用于(2)研究抑制性连接基序在优化突发神经代码中的作用。最后,我们将(3)开发统计数据分析方法,以促进树突依赖的突发编码的实验研究。当今最强大的机器学习方法,深度学习,受到新皮层分层结构的启发。通过在层次结构中概述神经编码的规则,所提出的工作可以激发信号处理算法的有效实现。此外,理解新皮层使用的神经代码对于分析生物医学数据至关重要。为了挑出一个可能的应用领域,我们注意到,脑机接口技术的改进在很大程度上取决于本提案中讨论的新型解码算法。因此,我们解决神经编码问题的新方法可以带来有价值的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naud, Richard其他文献
Parallel and Recurrent Cascade Models as a Unifying Force for Understanding Subcellular Computation
- DOI:
10.1016/j.neuroscience.2021.07.026 - 发表时间:
2022-04-21 - 期刊:
- 影响因子:3.3
- 作者:
Harkin, Emerson F.;Shen, Peter R.;Naud, Richard - 通讯作者:
Naud, Richard
Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis
- DOI:
10.3389/fnsyn.2019.00022 - 发表时间:
2019-08-14 - 期刊:
- 影响因子:3.7
- 作者:
Soares, Cary;Trotter, Daniel;Naud, Richard - 通讯作者:
Naud, Richard
Firing patterns in the adaptive exponential integrate-and-fire model.
- DOI:
10.1007/s00422-008-0264-7 - 发表时间:
2008-11 - 期刊:
- 影响因子:1.9
- 作者:
Naud, Richard;Marcille, Nicolas;Clopath, Claudia;Gerstner, Wulfram - 通讯作者:
Gerstner, Wulfram
Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system
- DOI:
10.1152/jn.00138.2015 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:2.5
- 作者:
Naud, Richard;Houtman, Dave;Longtin, Andre - 通讯作者:
Longtin, Andre
Speed-invariant encoding of looming object distance requires power law spike rate adaptation
- DOI:
10.1073/pnas.1306428110 - 发表时间:
2013-08-13 - 期刊:
- 影响因子:11.1
- 作者:
Clarke, Stephen E.;Naud, Richard;Maler, Leonard - 通讯作者:
Maler, Leonard
Naud, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naud, Richard', 18)}}的其他基金
Dendritic Computation and the Neural Code
树突计算和神经代码
- 批准号:
RGPIN-2017-06872 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Dendritic Computation and the Neural Code
树突计算和神经代码
- 批准号:
RGPIN-2017-06872 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Dendritic Computation and the Neural Code
树突计算和神经代码
- 批准号:
RGPIN-2017-06872 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Dendritic Computation and the Neural Code
树突计算和神经代码
- 批准号:
RGPIN-2017-06872 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Dendritic Computation and the Neural Code
树突计算和神经代码
- 批准号:
RGPIN-2017-06872 - 财政年份:2017
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Développement d'une méthode efficace pour la perforation des cellules du coeur des panneaux en matériaux composite à nid d'abeille pour une application spatiale
开发复合材料中的细胞穿孔方法和应用空间
- 批准号:
365414-2008 - 财政年份:2008
- 资助金额:
$ 3.79万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
- 批准号:
2304304 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
- 批准号:
10644518 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Exploring the multiple loci of learning and computation in simple artificial neural networks
探索简单人工神经网络中学习和计算的多个位点
- 批准号:
EP/X017915/1 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Research Grant
Interrogating the Dynamic Neural Computation of the Sense of Direction
质疑方向感的动态神经计算
- 批准号:
10752171 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
FET: Medium: Neural network computation and learning in well-mixed and spatially-organized molecular systems
FET:中:混合良好且空间组织的分子系统中的神经网络计算和学习
- 批准号:
2212546 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Continuing Grant
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
- 批准号:
10417625 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
- 批准号:
10599214 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Towards Improved Understanding and Efficient Utilization of Depthwise Computation in Modern Neural Networks
提高对现代神经网络深度计算的理解和有效利用
- 批准号:
577088-2022 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Alliance Grants
Investigating biomarkers for neural fingerprinting of MEG resting state recordings using computation
使用计算研究 MEG 静息态记录的神经指纹识别生物标志物
- 批准号:
573527-2022 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
University Undergraduate Student Research Awards