Directed evolution of electrically conductive phage-based materials

基于噬菌体的导电材料的定向进化

基本信息

  • 批准号:
    571446-2021
  • 负责人:
  • 金额:
    $ 3.28万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Electrical conductivity has been observed in a few naturally-occurring bacterial protein fibers, including the pili filaments produced by Geobacter sulfurreducens, and the extracellular appendages that extend the membrane of Shewanella oneidensis bacteria. In these conductive protein materials, electron transport is thought to be mediated by a combination of intra- and intermolecular electron delocalization and electron hopping across redox centers. Biomimetic engineering has also been employed to synthesize bacterial amyloid fibers or self-assembling peptides with enhanced conductivity. However, conductivity mechanisms are difficult to elucidate in protein fibers. Aromatic, charged and polar amino acids, protein structure, and chemical environment all influence the final conductivity of protein fibers. Electronic, protonic and ionic transport can occur in these complex materials, thus making it difficult to rationally engineer synthetic protein materials with conductivity levels that surpass the naturally conductive bacterial protein fibers.In this proposed work, we unite a biomaterials engineer, a physicist and a chemical biologist to tackle an important question in protein-based electronics. Namely, we will utilize directed evolution to evolve and allow nature to guide the design process of conductive protein fibers. We will achieve this by developing a novel directed evolution scheme for evolving and isolating conductive protein fibers, and screening them for conductivity.Specifically, we will investigate the use of filamentous M13 bacteriophages as biomolecules that assemble into proteinaceous fiber-like structures and that contain the genetic material necessary to trace the evolutionary mutations acquired through rounds of directed evolution. We will apply random and site-directed saturation mutagenesis approaches on the repeated pVIII coat protein of the bacteriophage, targeting its surface- exposed N-terminal variable region that has been shown to tolerate mutations without disrupting assembly of phage particles. To screen individual phage mutants after each round of evolution, we will utilize the Convex Lens-induced Confinement (CLiC) technology to gently squeeze single bacteriophages into nanoscale compartments. Upon isolation, we will perform direct conductivity measurements using nano-patterned electrodes inside the nano-compartments, which will also serve to orient the phages. Through repeated rounds of evolution, we will analyze the combinations of residues that contribute to electrical conductivity enhancement, and will gain critical knowledge about charge transport along protein fibers. Further, by selecting the most conductive mutants, we will evolve bacteriophages that could be utilized in a range of nano-electronic devices, and to be integrated in functional devices such as biosensors, bio-electrodes, wearables, biomaterials for electrical cell and tissue stimulation and various bio-inorganic interfaces.Overall, this project will contribute to fundamentally understanding charge transport in proteins, and to developing sustainable material alternatives for next-generation bio-electronics. It will also allow for developing new methods to screen for properties that have not previously been evolved via directed evolution. Through focused training and efforts of several trainees who will be involved in this multidisciplinary project, we expect these outcomes to impact nanotechnology and biomedical industries in Quebec and Canada.
在一些天然存在的细菌蛋白质纤维中观察到了导电性,包括由硫还原吉西他滨菌产生的皮利丝,以及延伸希瓦氏菌膜的细胞外附属物。 在这些导电蛋白质材料中,电子传递被认为是由分子内和分子间电子离域和电子跳跃跨越氧化还原中心的组合介导的。 仿生工程也被用于合成细菌淀粉样纤维或具有增强导电性的自组装肽。 然而,在蛋白质纤维中,导电机制很难阐明。 芳香族、带电和极性氨基酸、蛋白质结构和化学环境都影响蛋白质纤维的最终导电性。 在这些复杂的材料中可以发生电子,质子和离子的传输,因此很难合理地设计出具有超过天然导电细菌蛋白质纤维的导电水平的合成蛋白质材料。在这项拟议的工作中,我们联合了生物材料工程师,物理学家和化学生物学家来解决基于蛋白质的电子学中的一个重要问题。 也就是说,我们将利用定向进化来进化,并让自然来指导导电蛋白质纤维的设计过程。 我们将通过开发一种新的定向进化方案来实现这一目标,该方案用于进化和分离导电蛋白质纤维,并筛选它们的导电性。具体而言,我们将研究丝状M13噬菌体作为生物分子的用途,这些生物分子组装成蛋白质纤维状结构,并含有追踪通过定向进化获得的进化突变所需的遗传物质。 我们将对噬菌体的重复pVIII外壳蛋白应用随机和定点饱和诱变方法,靶向其表面暴露的N-末端可变区,该可变区已显示出耐受突变而不破坏噬菌体颗粒的组装。 为了在每一轮进化后筛选单个噬菌体突变体,我们将利用凸透镜诱导限制(CLiC)技术将单个噬菌体轻轻挤压到纳米级隔室中。 在隔离后,我们将使用纳米隔室内的纳米图案化电极进行直接电导率测量,这也将用于定向电子束。 通过一轮又一轮的进化,我们将分析有助于电导率增强的残基组合,并将获得关于沿着蛋白质纤维电荷传输的关键知识。 此外,通过选择最具导电性的突变体,我们将进化出可用于一系列纳米电子器件的噬菌体,并将其集成到功能器件中,如生物传感器,生物电极,可穿戴设备,用于电细胞和组织刺激的生物材料以及各种生物无机界面。总体而言,该项目将有助于从根本上了解蛋白质中的电荷传输,并为下一代生物电子产品开发可持续的材料替代品。 它还将允许开发新的方法来筛选以前没有通过定向进化进化的特性。通过集中培训和几个学员谁将参与这个多学科项目的努力,我们预计这些成果将影响纳米技术和生物医学产业在魁北克和加拿大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DorvalCourchesne, NoémieManuelleNM其他文献

DorvalCourchesne, NoémieManuelleNM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
  • 批准号:
    19ZR1415200
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
研究蝙蝠冬眠現象的分子进化机制
  • 批准号:
    31100273
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于microRNA前体性质的microRNA演化研究
  • 批准号:
    31100951
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
  • 批准号:
    11073001
  • 批准年份:
    2010
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于传孢类型藓类植物系统的修订
  • 批准号:
    30970188
  • 批准年份:
    2009
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y001338/1
  • 财政年份:
    2026
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Research Grant
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y000811/1
  • 财政年份:
    2026
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Research Grant
SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
  • 批准号:
    2400789
  • 财政年份:
    2025
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
  • 批准号:
    2337784
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Continuing Grant
NSF PRFB FY 2023: Thermoregulatory evolution of hummingbirds: Using urban heat islands as a globally replicated natural experiment
NSF PRFB 2023 财年:蜂鸟的体温调节进化:利用城市热岛作为全球复制的自然实验
  • 批准号:
    2305367
  • 财政年份:
    2024
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了