Viable Electrochemical System for Sustainable Fuel and Chemical Production
用于可持续燃料和化学品生产的可行电化学系统
基本信息
- 批准号:RGPIN-2020-04960
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
More than 80 per-cent of greenhouse gas emissions in Canada is energy-related. Development is most needed to enable sustainable energy sources, as well as utilize CO2 in the interim. This research program targets both of these areas; it enables a unique research environment within which to address critical applied and fundamental challenges in renewably production of fuels and chemical feedstocks from carbon dioxide and biomass wastes. Excess green electricity in Canada, e.g. hydroelectricity, during periods of high generation and low demand presents the opportunity for energy storage methods. Electrochemical CO2 reduction reaction (CO2RR) holds promise for electricity-conversion-into-fuels and CO2 mitigation, enabling thereby to address the issues of energy crisis and global warming. The electrochemical system includes an electron-donor side called cathode which reduces CO2 via the CO2RR, and an electron-acceptor side called anode in which the oxygen evolution reaction (OER) is the most convenient reaction. The OER, however, requires a very high applied potential and produces oxygen which is not a valuable feedstock. The low product selectivity in the cathode and huge potential required in the anode significantly decrease the energy conversion efficiency of the CO2RR system. Developing active electrocatalysts is thus paramount to improve the electrocatalytic performance. Moreover, significant effort is needed to decrease the applied potential in the anode side. This program seeks to develop nanomaterials and a novel electrochemical system to improve the energy efficiency in CO2RR systems, also to provide a green route for biomass valorization. It will replace the OER with efficient biomass waste oxidation reaction (BWOR) to decrease the cell potential and produce more valuable chemicals than oxygen. This technology will convert CO2 into hydrocarbons such as ethanol and propanol, and upgrade low quality biomass wastes such as black liquor and lignin to value-added chemicals. These processes, today, rely on fossil fuel sources with significant carbon footprint and negative environmental impacts. This multidisciplinary program will develop accurate molecular-level models based on the density functional theory (DFT) computations that with in-situ spectroscopic measurements such as Raman enhance the understanding of the catalytic reactions. It will contribute thereby to enabling rational design of targeted electrocatalytic nanomaterials. In addition, it will employ machine learning (ML) to accelerate the discovery of materials with superior catalytic activity and selectivity. Through this program, a new commercially viable electrochemical system with optimized components and reaction conditions will be developed to accommodate both CO2RR and BWOR at a low applied potential. This technology will be a step toward practical realization of CO2RR and biomass waste upgrading and will accelerate our transition to a sustainable environment and economy.
加拿大80%以上的温室气体排放与能源有关。最需要的是发展,以实现可持续能源,以及在过渡期间利用二氧化碳。该研究计划针对这两个领域;它提供了一个独特的研究环境,以解决从二氧化碳和生物质废物中可再生生产燃料和化学原料的关键应用和基本挑战。加拿大在高发电量和低需求期间的过剩绿色电力,例如水力发电,为能源储存方法提供了机会。电化学CO2还原反应(CO2 RR)有望将电能转化为燃料和CO2减排,从而能够解决能源危机和全球变暖问题。电化学系统包括电子供体侧(称为阴极,其通过CO2 RR还原CO2)和电子受体侧(称为阳极,其中析氧反应(OER)是最方便的反应)。然而,OER需要非常高的施加电势并且产生不是有价值的原料的氧气。阴极的低产物选择性和阳极所需的巨大电势显著降低了CO2 RR系统的能量转化效率。因此,开发活性电催化剂是提高电催化性能的关键。此外,需要显著的努力来降低阳极侧中的施加电势。该项目旨在开发纳米材料和新型电化学系统,以提高CO2 RR系统的能源效率,并为生物质的价值提供绿色途径。它将用有效的生物质废物氧化反应(BWOR)取代OER,以降低细胞电位并产生比氧气更有价值的化学物质。这项技术将把二氧化碳转化为乙醇和丙醇等碳氢化合物,并将黑液和木质素等低质量生物质废物升级为增值化学品。如今,这些过程依赖于化石燃料来源,具有显著的碳足迹和负面的环境影响。这个多学科的计划将开发基于密度泛函理论(DFT)计算的精确的分子水平模型,该模型与现场光谱测量,如拉曼增强了对催化反应的理解。这将有助于合理设计目标电催化纳米材料。此外,它将采用机器学习(ML)来加速发现具有上级催化活性和选择性的材料。通过该计划,将开发一种具有优化成分和反应条件的新的商业上可行的电化学系统,以在低应用电位下适应CO2 RR和BWOR。这项技术将是实现CO2 RR和生物质废物升级的一步,并将加速我们向可持续环境和经济的过渡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seifitokaldani, Ali其他文献
High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction.
- DOI:
10.1016/j.isci.2022.104744 - 发表时间:
2022-08-19 - 期刊:
- 影响因子:5.8
- 作者:
Lin, Roger;Salehi, Mahdi;Guo, Jiaxun;Seifitokaldani, Ali - 通讯作者:
Seifitokaldani, Ali
Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO
- DOI:
10.1039/c8ee01684d - 发表时间:
2018-09-01 - 期刊:
- 影响因子:32.5
- 作者:
Gabardo, Christine M.;Seifitokaldani, Ali;Sinton, David - 通讯作者:
Sinton, David
An ab initio method for the prediction of the lattice thermal transport properties of oxide systems: Case study of Li2O and K2O
- DOI:
10.1063/1.4932643 - 发表时间:
2015-10-14 - 期刊:
- 影响因子:3.2
- 作者:
Gheribi, Aimen E.;Seifitokaldani, Ali;Chartrand, Patrice - 通讯作者:
Chartrand, Patrice
Enhanced Electrochemical Reduction of CO2 Catalyzed by Cobalt and Iron Amino Porphyrin Complexes
- DOI:
10.1021/acsaem.8b01900 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:6.4
- 作者:
Abdinejad, Maryam;Seifitokaldani, Ali;Kraatz, Heinz Bernhard - 通讯作者:
Kraatz, Heinz Bernhard
CO(2) Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts.
- DOI:
10.1021/acscatal.2c01654 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:12.9
- 作者:
Abdinejad, Maryam;Irtem, Erdem;Farzi, Amirhossein;Sassenburg, Mark;Subramanian, Siddhartha;Van Montfort, Hugo-Pieter Iglesias;Ripepi, Davide;Li, Mengran;Middelkoop, Joost;Seifitokaldani, Ali;Burdyny, Thomas - 通讯作者:
Burdyny, Thomas
Seifitokaldani, Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seifitokaldani, Ali', 18)}}的其他基金
Electrocatalysis for Renewable Energy Production and Conversion
可再生能源生产和转化的电催化
- 批准号:
CRC-2019-00011 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Electrocatalysis For Renewable Energy Production And Conversion
可再生能源生产和转化的电催化
- 批准号:
CRC-2019-00011 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Viable Electrochemical System for Sustainable Fuel and Chemical Production
用于可持续燃料和化学品生产的可行电化学系统
- 批准号:
RGPIN-2020-04960 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Electrocatalysis for Renewable Energy Production and Conversion
可再生能源生产和转化的电催化
- 批准号:
CRC-2019-00011 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Viable Electrochemical System for Sustainable Fuel and Chemical Production
用于可持续燃料和化学品生产的可行电化学系统
- 批准号:
DGECR-2020-00471 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Viable Electrochemical System for Sustainable Fuel and Chemical Production
用于可持续燃料和化学品生产的可行电化学系统
- 批准号:
RGPIN-2020-04960 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Heat Utilisation via Thermally Regenerative Electrochemical System
通过热再生电化学系统进行热量利用
- 批准号:
EP/X015920/2 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Quest for Sustainable Electrochemical Energy Storage System
寻求可持续电化学储能系统
- 批准号:
DP230101579 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Projects
Heat Utilisation via Thermally Regenerative Electrochemical System
通过热再生电化学系统进行热量利用
- 批准号:
EP/X015939/1 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Heat Utilisation via Thermally Regenerative Electrochemical System
通过热再生电化学系统进行热量利用
- 批准号:
EP/X015920/1 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Development of Robust Artificial Enzymatic System based Electrochemical Sensing Platform
基于电化学传感平台的鲁棒人工酶系统的开发
- 批准号:
23K19192 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Dialysate regeneration system based on photo-electrochemical urea oxidation and reactive adsorption to enable portable hemodialysis
基于光电化学尿素氧化和反应吸附的透析液再生系统,可实现便携式血液透析
- 批准号:
10761594 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Development of an optimized electrochemical modular system to transform captured CO2 into formate salt as deicing agent
开发优化的电化学模块化系统,将捕获的二氧化碳转化为甲酸盐作为除冰剂
- 批准号:
570918-2021 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Applied Research and Development Grants - Level 3
CO2 reduction, H2 production, and biomass upgrading through one single electrochemical system: from bench to commercialization
通过单一电化学系统减少二氧化碳、生产氢气和生物质升级:从实验室到商业化
- 批准号:
577240-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Market Assessment for Electrochemical Method and System for Preparation of Ammonium Nitrate-based Fertilizers from Ammonia Waste
用氨废液制备硝酸铵基肥料的电化学方法和系统的市场评估
- 批准号:
577523-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Idea to Innovation
The Design of a Sulfur Dioxide Tolerant Electrochemical Carbon Dioxide Conversion System
耐二氧化硫电化学二氧化碳转化系统的设计
- 批准号:
569392-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Doctoral