Simulation-Driven Graphics and Fabrication

仿真驱动的图形和制造

基本信息

  • 批准号:
    CRC-2021-00227
  • 负责人:
  • 金额:
    $ 7.29万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Canada Research Chairs
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Algorithms for computational physics serve as a computer's imagination, allowing the machine to ``visualize'' the outcome of complex, real-world interactions. These algorithms are used to drive the games we play, the movies we watch, to design cars, ships and planes and in countless other areas from architecture to medicine. But, while a person can imagine an object interacting with the world almost instantaneously, accurate physical simulations operate on time scales of hours, days or weeks. Computational Fabrication and Computer Graphics amplify the need for as-fast-as-a-person physics simulation. Additive manufacturing (identified by the World Economic Forum as a key emerging technology) allows for the ultra high-resolution control of geometry and material properties of fabricated objects. Predicting the performance of such designs in the real world often requires the solution of computational problems thousands of times larger than what was previously required in engineering disciplines. The over-arching goal of Professor Levin's research is to manifest this computational imagination by developing new machine learning techniques that understand physics and mechanics. His work tackles major difficulties in adapting standard machine learning techniques to large-scale problems in physics simulation. Levin focuses on creating algorithms that are robust to real-world input data, from LIDAR data generated by self-driving cars, to computer-aided designs created during the engineering design process. By leveraging these increasing sources of geometric information, Levin utilizes learning and data-driven approaches to create fast algorithms for physics simulation that can be orders-of-magnitude faster than standard approaches, but retain predictive accuracy. These methods enable scalable generative design across a myriad of engineering and computer graphics domains -- from aeronautical design to visual effects. Finally, Levin's work focuses on methods that are generalizable across large families of geometries and phenomenologies which can alleviate the need to train neural models for new examples -- conserving computational power and energy. Professor Levin's research enables a game changing shift in simulation performance and accuracy along with more environmentally friendly machine learning approaches than in other disciplines.
计算物理学的算法就像计算机的想象力,允许机器“可视化”复杂的现实世界交互的结果。这些算法被用来驱动我们玩的游戏,我们看的电影,设计汽车,船舶和飞机以及从建筑到医学的无数其他领域。但是,虽然人们可以想象一个物体几乎瞬间与世界互动,但精确的物理模拟是在几小时、几天或几周的时间尺度上进行的。计算制造和计算机图形学放大了对像人一样快的物理模拟的需求。增材制造(被世界经济论坛确定为一项关键的新兴技术)允许对制造对象的几何形状和材料特性进行超高分辨率控制。预测这种设计在真实的世界中的性能通常需要解决比以前工程学科所需的大数千倍的计算问题。Levin教授的研究的首要目标是通过开发理解物理和力学的新机器学习技术来体现这种计算想象力。 他的工作解决了将标准机器学习技术应用于物理模拟中的大规模问题的主要困难。Levin专注于创建对现实世界输入数据具有鲁棒性的算法,从自动驾驶汽车生成的LIDAR数据到工程设计过程中创建的计算机辅助设计。通过利用这些不断增加的几何信息来源,Levin利用学习和数据驱动的方法来创建用于物理模拟的快速算法,这些算法可以比标准方法快几个数量级,但保持预测准确性。这些方法使可扩展的生成设计跨越无数的工程和计算机图形领域-从航空设计到视觉效果。最后,Levin的工作重点是在几何和现象学的大家族中推广的方法,这些方法可以减轻为新示例训练神经模型的需要-节省计算能力和能量。 Levin教授的研究使模拟性能和准确性发生了改变游戏规则的转变,并沿着采用了比其他学科更环保的机器学习方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levin, David其他文献

A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures
  • DOI:
    10.1016/j.scitotenv.2021.152711
  • 发表时间:
    2022-01-03
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Flores-Orozco, Daniel;Levin, David;Cicek, Nazim
  • 通讯作者:
    Cicek, Nazim
Cage-free local deformations using green coordinates
使用绿色坐标的无笼局部变形
  • DOI:
    10.1007/s00371-010-0438-x
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Luo, Xiaonan;Levin, David;Li, Zheng;Deng, Zhengjie;Liu, Dingyuan
  • 通讯作者:
    Liu, Dingyuan
Between moving least-squares and moving least-l1
  • DOI:
    10.1007/s10543-014-0522-0
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Levin, David
  • 通讯作者:
    Levin, David
One Simple Intervention Begets Another: Let's Get the Gestational Age Right First
  • DOI:
    10.1007/s10995-016-2003-3
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Levin, Julia;Gurau, David;Levin, David
  • 通讯作者:
    Levin, David
Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405
  • DOI:
    10.1007/s00253-006-0316-7
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Islam, Rumana;Cicek, Nazim;Levin, David
  • 通讯作者:
    Levin, David

Levin, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levin, David', 18)}}的其他基金

Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
  • 批准号:
    RGPIN-2017-05524
  • 财政年份:
    2022
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Process 11 Twin-Screw Extruder for Advanced Polymer Blending
用于高级聚合物共混的 Process 11 双螺杆挤出机
  • 批准号:
    RTI-2023-00228
  • 财政年份:
    2022
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Research Tools and Instruments
Bioengineering Next Generation Biopolymers
生物工程下一代生物聚合物
  • 批准号:
    RGPIN-2017-04945
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Driven Graphics And Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
  • 批准号:
    RGPIN-2017-05524
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
  • 批准号:
    RGPIN-2017-05524
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Bioengineering Next Generation Biopolymers
生物工程下一代生物聚合物
  • 批准号:
    RGPIN-2017-04945
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
  • 批准号:
    RGPIN-2017-05524
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

A Study for Sketch-Driven Fluid Simulation in Computer Graphics
计算机图形学中草图驱动流体模拟的研究
  • 批准号:
    23K18514
  • 财政年份:
    2023
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
  • 批准号:
    2310171
  • 财政年份:
    2022
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
  • 批准号:
    2145665
  • 财政年份:
    2022
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Continuing Grant
Simulation-Driven Graphics And Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2021
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2020
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2019
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2018
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
  • 批准号:
    CRC-2016-00078
  • 财政年份:
    2017
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Canada Research Chairs
Advanced data-driven and user-driven content creation for computer graphics
先进的数据驱动和用户驱动的计算机图形内容创建
  • 批准号:
    155592-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-automatic control for data-driven computer graphics
数据驱动计算机图形学的半自动控制
  • 批准号:
    299068-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 7.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了