Can Machines Learn Common-Sense Reasoning?

机器可以学习常识推理吗?

基本信息

  • 批准号:
    RGPIN-2022-05109
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Common-sense reasoning (CSR) has recently garnered a significant renewal of interest in the Artificial Intelligence community, resulting from the advent of certain technologies (e.g., dialogue systems, story understanding software, and recommendation tools) which can seem strikingly unintelligent in the absence of common sense. The goal of the proposed research is to make the learning of common-sense reasoning achievable for Machine Learning (ML) models, in order to help them generalize to complex scenarios that are encountered frequently in  the real world. Specifically, the research will first attempt to quantify the prevalence and classify the complexities of common-sense demanding problems in a variety of natural language understanding applications. The research will next proceed with studying strategies for the development of evaluation protocols that precisely identify how deep learning models make use of train instances to resolve problems at test time. When coupled with the first step of the research plan, these evaluation protocols will be able to provide us with a more nuanced understanding of the difficulty of instances for models. In addition, the research will explore incorporating in these protocols corrective measures for gender, racial and other forms of bias present in today's language generation models. Inspired by principles in software engineering, the use of all-purpose behavioural measures, such as invariance or minimum functionality tests, will also be explored and promoted as an important new benchmark measure for the current and future NLP systems. The next step of research will be dedicated to the development of novel deep learning models, based on the recently proposed Transformer architecture, which are potentially CSR-endowed, through modifying and augmenting various model components, including the attention mechanism, the decoder/encoder layers, and the training method. Some of the fundamental and technological questions that the research will address include: i) How can we develop a unified, generalized system that is capable of simultaneously tackling a number of difficult CSR tasks, as well as their more general, downstream counterparts with high coverage and interpretability; ii) How can we determine whether an improved performance on various Natural Language Processing (NLP) benchmarks represents a genuine progress towards common-sense-enabled systems; iii) How can we devise benchmarks that are more challenging, realistic and large-scale; iv) How can we use common-sense reasoning to help bridge the performance gap between robots and humans in the real world; and v) Can common-sense reasoning be used as a basis for developing end-to-end debiasing techniques that can combat various forms of biases prevalent in current pre-trained language models and corpora (gender/race/cultural)?
由于某些技术(如对话系统、故事理解软件和推荐工具)的出现,常识推理(common -sense reasoning, CSR)最近在人工智能社区中重新引起了人们的兴趣,这些技术在缺乏常识的情况下看起来非常不智能。提出的研究目标是使机器学习(ML)模型可以实现常识推理的学习,以帮助它们推广到现实世界中经常遇到的复杂场景。具体来说,该研究将首先尝试量化各种自然语言理解应用中常识要求问题的普遍性和复杂性。该研究下一步将继续研究评估协议的开发策略,以精确识别深度学习模型如何利用训练实例来解决测试时的问题。当与研究计划的第一步相结合时,这些评估协议将能够为我们提供对模型实例难度的更细致的理解。此外,本研究将探讨在这些协议中纳入针对当今语言生成模型中存在的性别、种族和其他形式偏见的纠正措施。受软件工程原理的启发,通用行为度量的使用,如不变性或最小功能测试,也将作为当前和未来NLP系统的重要新基准度量进行探索和推广。下一步的研究将致力于开发新的深度学习模型,基于最近提出的Transformer架构,通过修改和增强各种模型组件,包括注意机制,解码器/编码器层和训练方法,这可能是csr赋予的。本研究将解决的一些基本和技术问题包括:i)我们如何开发一个统一的、通用的系统,能够同时处理一些困难的企业社会责任任务,以及具有高覆盖率和可解释性的更一般的下游对应任务;ii)我们如何确定在各种自然语言处理(NLP)基准上的性能改进是否代表了向常识支持系统的真正进步;iii)我们如何设计更具挑战性、更现实和更大规模的基准;iv)我们如何使用常识推理来帮助弥合现实世界中机器人和人类之间的性能差距;v)常识性推理是否可以作为开发端到端去偏见技术的基础,以对抗当前预训练语言模型和语料库(性别/种族/文化)中普遍存在的各种形式的偏见?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emami, Ali其他文献

The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers
  • DOI:
    10.1017/s0007114517003774
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Emami, Ali;Tofighi, Asghar;Bazargani-Gilani, Behnaz
  • 通讯作者:
    Bazargani-Gilani, Behnaz
Watch out for neuromyelitis optica spectrum disorder onset or clinical relapse after COVID-19 vaccination: What neurologists need to know?
  • DOI:
    10.1016/j.msard.2022.103960
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Paybast, Sepideh;Emami, Ali;Baghalha, Fatemeh;Moghadasi, Abdorreza Naser
  • 通讯作者:
    Moghadasi, Abdorreza Naser
Comparison of Two Continuous Glucose Monitoring Systems, Dexcom G4 Platinum and Medtronic Paradigm Veo Enlite System, at Rest and During Exercise
  • DOI:
    10.1089/dia.2015.0394
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Taleb, Nadine;Emami, Ali;Haidar, Ahmad
  • 通讯作者:
    Haidar, Ahmad
Practical Approach to Physical-Chemical Acid-Base Management Stewart at the Bedside
Effect of oral CoQ10 supplementation along with precooling strategy on cellular response to oxidative stress in elite swimmers
  • DOI:
    10.1039/c8fo00960k
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Emami, Ali;Bazargani-Gilani, Behnaz
  • 通讯作者:
    Bazargani-Gilani, Behnaz

Emami, Ali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emami, Ali', 18)}}的其他基金

Can Machines Learn Common-Sense Reasoning?
机器可以学习常识推理吗?
  • 批准号:
    DGECR-2022-00423
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement
Enhancing Simulation Environments for The Artificial Pancreas
增强人工胰腺的模拟环境
  • 批准号:
    504921-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Enhancing Simulation Environments for The Artificial Pancreas
增强人工胰腺的模拟环境
  • 批准号:
    504921-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Enhancing Simulation Environments for The Artificial Pancreas
增强人工胰腺的模拟环境
  • 批准号:
    504921-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mathematical Models of Hepatic Glucagon and Insulin Actions in Type 1 Diabetes for the Development of External Artificial Pancreas Systems
1 型糖尿病中肝胰高血糖素和胰岛素作用的数学模型,用于开发外部人工胰腺系统
  • 批准号:
    490806-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似海外基金

Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Early Career Researcher Award
A Cell-Free Toolbox to Anticipate, Learn and Counter Antimicrobial Resistance
预测、学习和对抗抗菌素耐药性的无细胞工具箱
  • 批准号:
    BB/Y005074/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
A Cell-Free Toolbox to Anticipate, Learn and Counter Antimicrobial Resistance
预测、学习和对抗抗菌素耐药性的无细胞工具箱
  • 批准号:
    BB/Y005325/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
How children learn sentence structures across languages: A language-adaptive scope analysis
儿童如何跨语言学习句子结构:语言自适应范围分析
  • 批准号:
    24K16044
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
  • 批准号:
    DP230100025
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Projects
Listen, Learn & Leap: Co-producing Equitable and Sustainable Nature-based Solutions for Climate Resilience in East African Cities
聆听、学习
  • 批准号:
    NE/Z503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Play and Learn with Green Bean
与绿豆一起玩耍和学习
  • 批准号:
    10062639
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Further development of an inclusive, interactive mobile app for young people to learn about energy and CO2.
进一步开发包容性的交互式移动应用程序,供年轻人了解能源和二氧化碳。
  • 批准号:
    10060678
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant for R&D
4th Canadian HIV and Aging symposium: HIV and Aging WELL: WE Live & Learn Together
第四届加拿大艾滋病毒与老龄化研讨会:艾滋病毒与老龄化良好:我们生活
  • 批准号:
    480865
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Miscellaneous Programs
Investigating how Opportunities to Learn Culturally Responsive Teaching Influence Beginning Elementary Mathematics Teachers’ Effectiveness and Retention
调查文化响应式教学的学习机会如何影响初级数学教师的有效性和保留率
  • 批准号:
    2243168
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了