Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
基本信息
- 批准号:RGPIN-2018-06778
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation learning has prompted some of the greatest advances seen in machine learning; for example, the lower dimensional, qualitatively meaningful representations of imaging datasets learned by convolutional networks (CNNs). Clinical data lacks such natural representations, which is a limiting factor to the progress of relevant machine learning. This is especially problematic in the realm of decision making, where there is much uncertainty about what is best for a particular patient. Most interventions have potentially harmful side-effects, and even well-established intensive care unit are associated with improved outcomes in randomized controlled. It is therefore critical to develop representations or health phenotypes that are robust representations of patient state. Our goal is to develop health phenotypes, and pioneer their use to understand what it means to be healthy, identify similar patients, improve healthcare delivery, and quantify the impact of possible interventions. In order to develop health phenotypes, we need to integrate data that span free text notes, coded procedures and diagnoses, timeseries of vitals like blood pressure, and high-frequency signals like ECG. For any given patient, different data may be important for a specific task. While prior work has targeted specific tasks (e.g., the prediction of longitudinal outcomes or diagnostic codes, we plan to focus instead on representations that integrate distinct data types, including coded billing data (sparse binary tensors), vitals and labs (dense irregularly sampled time series data), clinical narratives (variable length text vectors), and genomics data (dense binary matrices). Learned phenotypes must be reliable and robust as there are many potential unintended consequences that may result from the application machine learning in clinical practice. Incorporating these data into phenotypic latent state estimates requires mapping across time-scales and granularity. The proposed research will have a strong impact on our understanding of what it means to be healthy, and variance within the human phenotype. The importance of representation learning in other fields has increased along with the intent to use the machine learning systems in a practical setting. Our focus on meaningful phenotypes discovery in heterogeneous data is also powerful in many other application areas where justifications about the robustness of a learned representation in machine learning methods are expected by collaborators.
表征学习推动了机器学习领域一些最伟大的进步;例如,通过卷积网络(CNN)学习的图像数据集的低维、定性有意义的表示。临床数据缺乏这种自然表示,这是相关机器学习进展的限制因素。这在决策领域尤其成问题,因为对于特定患者来说什么是最好的存在很大的不确定性。大多数干预措施都有潜在的有害副作用,即使是完善的重症监护病房也与随机对照结果的改善相关。因此,开发能够有力地代表患者状态的表征或健康表型至关重要。我们的目标是开发健康表型,并率先使用它们来了解健康意味着什么,识别类似的患者,改善医疗服务,并量化可能干预措施的影响。为了开发健康表型,我们需要整合涵盖自由文本注释、编码程序和诊断、血压等生命体征时间序列以及心电图等高频信号的数据。对于任何给定的患者,不同的数据对于特定任务可能很重要。虽然之前的工作针对特定任务(例如,纵向结果或诊断代码的预测),但我们计划将重点放在集成不同数据类型的表示上,包括编码计费数据(稀疏二进制张量)、生命体征和实验室(密集不规则采样时间序列数据)、临床叙述(可变长度文本向量)和基因组数据(密集二进制矩阵)。学习的表型必须 可靠且稳健,因为在临床实践中应用机器学习可能会产生许多潜在的意想不到的后果。将这些数据纳入表型潜在状态估计需要跨时间尺度和粒度的映射。拟议的研究将对我们对健康意味着什么以及人类表型内的差异的理解产生重大影响。随着在实际中使用机器学习系统的意图,表示学习在其他领域的重要性也随之增加。 设置。我们对异构数据中有意义的表型发现的关注在许多其他应用领域也很强大,在这些应用领域中,合作者期望证明机器学习方法中学习表示的稳健性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghassemi, Marzyeh其他文献
Learning to Detect Vocal Hyperfunction From Ambulatory Neck-Surface Acceleration Features: Initial Results for Vocal Fold Nodules
- DOI:
10.1109/tbme.2013.2297372 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:4.6
- 作者:
Ghassemi, Marzyeh;Van Stan, Jarrad H.;Guttag, John V. - 通讯作者:
Guttag, John V.
TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease.
- DOI:
10.1038/s44161-022-00206-6 - 发表时间:
2023-01-16 - 期刊:
- 影响因子:0
- 作者:
Zekavat, Seyedeh M;Viana-Huete, Vanesa;Matesanz, Nuria;Jorshery, Saman Doroodgar;Zuriaga, Maria A;Uddin, Md Mesbah;Trinder, Mark;Paruchuri, Kaavya;Zorita, Virginia;Ferrer-Perez, Alba;Amoros-Perez, Marta;Kunderfranco, Paolo;Carriero, Roberta;Greco, Carolina M;Aroca-Crevillen, Alejandra;Hidalgo, Andres;Damrauer, Scott M;Ballantyne, Christie M;Niroula, Abhishek;Gibson, Christopher J;Pirruccello, James;Griffin, Gabriel;Ebert, Benjamin L;Libby, Peter;Fuster, Valentin;Zhao, Hongyu;Ghassemi, Marzyeh;Natarajan, Pradeep;Bick, Alexander G;Fuster, Jose J;Klarin, Derek - 通讯作者:
Klarin, Derek
Machine learning and health need better values.
机器学习和健康需要更好的价值观。
- DOI:
10.1038/s41746-022-00595-9 - 发表时间:
2022-04-22 - 期刊:
- 影响因子:15.2
- 作者:
Ghassemi, Marzyeh;Mohamed, Shakir - 通讯作者:
Mohamed, Shakir
Can AI Help Reduce Disparities in General Medical and Mental Health Care?
- DOI:
10.1001/amajethics.2019.167 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:0
- 作者:
Chen, Irene Y;Szolovits, Peter;Ghassemi, Marzyeh - 通讯作者:
Ghassemi, Marzyeh
Decision-centered design of a clinical decision support system for acute management of pediatric congenital heart disease.
- DOI:
10.3389/fdgth.2022.1016522 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Assadi, Azadeh;Laussen, Peter C.;Freire, Gabrielle;Ghassemi, Marzyeh;Trbovich, Patricia - 通讯作者:
Trbovich, Patricia
Ghassemi, Marzyeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghassemi, Marzyeh', 18)}}的其他基金
Machine Learning For Health
机器学习促进健康
- 批准号:
CRC-2018-00222 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
- 批准号:
RGPIN-2018-06778 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
- 批准号:
RGPIN-2018-06778 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Health
机器学习促进健康
- 批准号:
1000232496-2018 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
- 批准号:
RGPIN-2018-06778 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Health
机器学习促进健康
- 批准号:
1000232496-2018 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Canada Research Chairs
Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
- 批准号:
RGPIN-2018-06778 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Developing novel time-varying phenotype representations for clinical systems
为临床系统开发新颖的时变表型表征
- 批准号:
DGECR-2018-00018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Developing a Risk Index for Functional Decline in Middle-Aged and Older Adults with HIV
制定中老年艾滋病毒感染者功能衰退的风险指数
- 批准号:
10762280 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Developing Tools to Understand an Alternative Fate of Urate in Neurodegenerative Diseases
开发工具来了解尿酸盐在神经退行性疾病中的替代命运
- 批准号:
10668103 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
- 批准号:
10678199 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
- 批准号:
10680017 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:














{{item.name}}会员




