Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
基本信息
- 批准号:RGPIN-2021-02389
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For over 20 years, artificial intelligence (AI) multiagent systems researchers have explored how best to model trustworthiness of agents, of value in selecting the most valuable partners for such applications as e-commerce. Methods for determining the most reputable agents have considered predicting future reliability based on past behaviour; there has also been effort in reasoning about the trustworthiness of peer advice about other agents. More recently, with increased attention on AI from organizations and individuals, the issue of trusted AI has come into focus as well: developing strategies for encouraging acceptance of AI solutions, allaying concerns and mistrust that may arise. The central premise of our research is that methods from multiagent trust modeling may hold the key in designing approaches for ensuring trusted AI. We will illustrate how lack of trust modeling handicaps general AI solutions and how the methods for calibrating trust-based models can be useful for assessing the value of varied efforts in trusted AI. Three key subgoals will be explored: mapping a solution for performing context-specific trust modeling; applying trust modeling to the critical social concern of digital misinformation; demonstrating how trust can serve to produce a more accessible and acceptable online networking environment for all users, understanding as well the role that opinion dynamics plays in bringing these communities together. Some primary methods used in our work will include Markov Decision Processes for progressively learning about trust from first principles, predicting future trustworthiness from past behaviour, integrating as well user modeling; simulations of trust modeling methods for calibrating and comparing, as is also done with the work on trust modeling testbeds; attuning solutions to user preferences including for assistive needs of users (older adults or those with some kind of impairment); reasoning about core groups of influencers in social networks through network dynamics; detecting digital misinformation through the modeling of authors and message raters, using a data-driven multi-faceted approach. This work will advance multiagent trust modeling, integrating Bayesian and data-driven methods and highlighting uses towards which trust is put. The impact of this work will be to enable significant steps forward with engendering trust in AI solutions through improved trust modeling methods. In Canada, organizations and individuals invested in seeing the benefits of AI will acquire better confidence in continuing to embrace these solutions. Users of social media challenged by questionable or overwhelming content will also emerge with a better footing. All of these considerations are ones with significant social value; the research agenda is one which should attract important participation from students of currently underrepresented groups, who will be sought for their unique expertise in AI and social networks.
20多年来,人工智能(AI)多智能体系统研究人员一直在探索如何最好地对代理的可信度进行建模,这对于为电子商务等应用选择最有价值的合作伙伴具有价值。用于确定最有信誉的代理的方法已经考虑了基于过去的行为预测未来的可靠性,也一直在努力推理其他代理的同行建议的可信度。最近,随着组织和个人对人工智能的关注越来越多,可信人工智能的问题也成为焦点:制定鼓励接受人工智能解决方案的战略,减轻可能出现的担忧和不信任。我们研究的中心前提是,多智能体信任建模的方法可能是设计确保可信AI的方法的关键。我们将说明缺乏信任建模如何阻碍通用AI解决方案,以及校准基于信任的模型的方法如何有助于评估可信AI中各种努力的价值。三个关键的子目标将被探讨:映射一个解决方案,执行特定于上下文的信任建模;应用信任建模的关键社会问题的数字错误信息;展示信任如何能够为所有用户提供一个更容易访问和接受的在线网络环境,以及理解的作用,意见动态在这些社区聚集在一起。在我们的工作中使用的一些主要方法将包括马尔可夫决策过程,用于从第一原理逐步学习信任,从过去的行为预测未来的可信度,以及整合用户建模;用于校准和比较的信任建模方法的模拟,也可以在信任建模测试平台上进行;使解决方案适应用户的偏好,包括用户的辅助需求(老年人或有某种障碍的人);通过网络动态推理社交网络中的核心影响者群体;使用数据驱动的多方面方法,通过对作者和消息评级者进行建模来检测数字错误信息。这项工作将推进多智能体信任建模,整合贝叶斯和数据驱动的方法,并强调信任的用途。这项工作的影响将是通过改进的信任建模方法,在人工智能解决方案中产生信任方面取得重大进展。在加拿大,投资于看到人工智能好处的组织和个人将更有信心继续接受这些解决方案。受到可疑或压倒性内容挑战的社交媒体用户也将获得更好的立足点。所有这些考虑因素都具有重要的社会价值;研究议程应该吸引目前代表性不足的群体的学生的重要参与,他们将因其在人工智能和社交网络方面的独特专业知识而受到追捧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cohen, Robin其他文献
Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems
- DOI:
10.1016/j.ins.2022.04.027 - 发表时间:
2022-04-19 - 期刊:
- 影响因子:8.1
- 作者:
Wahab, Omar Abdel;Rjoub, Gaith;Cohen, Robin - 通讯作者:
Cohen, Robin
QOLLTI-F: measuring family carer quality of life
- DOI:
10.1177/0269216306072764 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:4.4
- 作者:
Cohen, Robin;Leis, Anne M.;Ashbury, Fredrick D. - 通讯作者:
Ashbury, Fredrick D.
Multiagent Resource Allocation for Dynamic Task Arrivals with Preemption
- DOI:
10.1145/2875441 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:5
- 作者:
Doucette, John A.;Pinhey, Graham;Cohen, Robin - 通讯作者:
Cohen, Robin
Micro-Meso-Macro Practice Tensions in Using Patient-Reported Outcome and Experience Measures in Hospital Palliative Care
- DOI:
10.1177/1049732318761366 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:3.2
- 作者:
Krawczyk, Marian;Sawatzky, Richard;Cohen, Robin - 通讯作者:
Cohen, Robin
Personalized multi-faceted trust modeling to determine trust links in social media and its potential for misinformation management
- DOI:
10.1007/s41060-021-00294-w - 发表时间:
2022-01-22 - 期刊:
- 影响因子:2.4
- 作者:
Parmentier, Alexandre;Cohen, Robin;Chen, Queenie - 通讯作者:
Chen, Queenie
Cohen, Robin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cohen, Robin', 18)}}的其他基金
Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
- 批准号:
RGPIN-2021-02389 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence Trust Modeling in Multiagent Systems to Streamline Social Networking
多代理系统中的人工智能信任建模可简化社交网络
- 批准号:
RGPIN-2016-03615 - 财政年份:2016
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2015
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2014
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2013
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Trust and social networking of multiagent peers
多智能体对等体的信任和社交网络
- 批准号:
880-2011 - 财政年份:2012
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
ISimcha Technology Platform for Recruiting a Diverse Population of Older Adults into Clinical Trials
ISimcha 技术平台,用于招募不同的老年人群进行临床试验
- 批准号:
10761602 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Counteracting Structural Barriers to Increase Access to Medications for Opioid Use Disorder (MOUD) Among Unhoused Montanans
消除结构性障碍,增加无家可归的蒙大拿人获得阿片类药物使用障碍 (MOUD) 药物的机会
- 批准号:
10773710 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
BOLSTER: Strengthening Patient and Caregiver Supports in Advanced Gynecologic and Gastrointestinal Cancers - a Multi-Site Randomized Controlled Trial
BOLSTER:加强晚期妇科和胃肠道癌症患者和护理人员的支持 - 一项多中心随机对照试验
- 批准号:
10583119 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Community Liaison and Recruitment Core (CLRC)
社区联络和招聘核心 (CLRC)
- 批准号:
10729793 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Patterns in Women's Unmet Sexual and Reproductive Healthcare Needs Over the Life Course
女性一生中未满足的性和生殖保健需求的模式
- 批准号:
10677345 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别: