Robust Artificial Intelligence Systems to Improve Security of Smartphone Users

强大的人工智能系统可提高智能手机用户的安全性

基本信息

  • 批准号:
    RGPIN-2019-05120
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The wide-ranging capabilities of modern smartphones have redefined how we work and entertain ourselves. Unfortunately, this is accompanied with an increase in the number and sophistication of threats to personal and corporate data. Several AI-based solutions have been put forth that provide defences against these threats. For instance, unauthorized usage of smartphones by non-owners is a threat that is addressed by AI-based continuous authentication solutions. Continuous authentication products rely on the device usage behaviour of smartphone owners (e.g., typing or swiping behaviour). Similarly, AI-based fraud detection methods address the threat of fraudulent transactions by malware on smartphones. While these solutions improve security under some circumstances, they do not consider attackers that attempt to actively defeat them. As a result, these solutions may not provide the desired level of security. The long-term goal of the proposed research is to evaluate the security properties of AI-based security solutions against human adversaries who will assume different attack capabilities, propose improvements to the existing systems so that they are resilient against human adversaries, and the identification of the most effective way to communicate properties of these methods to users so that they can choose the configuration that works best for them while minimizing incidents due to miscomprehension and misconfiguration. The near-term goal of this research is to bolster the security of two AI-based systems that are currently being used to improve the security of mobile users, continuous authentication systems and device fingerprinting, against imitation-based attacks ("mimicry attacks") from human adversaries. Exciting times are ahead: enterprises are increasingly adopting AI-based continuous authentication solutions like Samsung BioCatch and IBM Trusteer. Financial institutions are widely using AI-based fraud detection methods to flag potentially fraudulent transactions. While these efforts hold great promise, it is critical to carefully evaluate the security offered by these systems against resourceful adversaries. Our research will ensure that security practitioners and product designers are not only aware of the present limitations of the AI-based security systems but also aware of the measures they can take to make these solutions more robust against active adversaries. Finally, by providing controls to the end users, we will address the often neglected human side of these systems.
现代智能手机的广泛功能重新定义了我们工作和娱乐的方式。不幸的是,随之而来的是针对个人和企业数据的威胁的数量和复杂性的增加。已经提出了几种基于人工智能的解决方案来防御这些威胁。例如,非拥有者未经授权使用智能手机是一种威胁,基于人工智能的持续身份验证解决方案可以解决这一威胁。持续身份验证产品依赖于智能手机所有者的设备使用行为(例如打字或刷卡行为)。同样,基于人工智能的欺诈检测方法可以解决智能手机上恶意软件造成的欺诈交易威胁。 虽然这些解决方案在某些情况下提高了安全性,但它们没有考虑尝试主动击败它们的攻击者。因此,这些解决方案可能无法提供所需的安全级别。拟议研究的长期目标是评估基于人工智能的安全解决方案针对具有不同攻击能力的人类对手的安全属性,提出对现有系统的改进,以便它们能够抵御人类对手,并确定向用户传达这些方法的属性的最有效方式,以便他们可以选择最适合他们的配置,同时最大限度地减少由于误解和错误配置而导致的事件。这项研究的近期目标是增强两个基于人工智能的系统的安全性,这两个系统目前用于提高移动用户的安全性、连续身份验证系统和设备指纹识别,以抵御来自人类对手的基于模仿的攻击(“模仿攻击”)。激动人心的时代即将到来:企业越来越多地采用基于人工智能的持续身份验证解决方案,例如 Samsung BioCatch 和 IBM Trusteer。金融机构广泛使用基于人工智能的欺诈检测方法来标记潜在的欺诈交易。虽然这些努力前景广阔,但针对足智多谋的对手,仔细评估这些系统提供的安全性至关重要。我们的研究将确保安全从业者和产品设计师不仅了解基于人工智能的安全系统目前的局限性,而且还了解他们可以采取哪些措施来使这些解决方案更强大地应对活跃的对手。最后,通过向最终用户提供控制,我们将解决这些系统中经常被忽视的人性化方面的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khan, Hassan其他文献

Serum albumin concentration and incident type 2 diabetes risk: new findings from a population-based cohort study
  • DOI:
    10.1007/s00125-015-3520-0
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Kunutsor, Setor K.;Khan, Hassan;Laukkanen, Jari A.
  • 通讯作者:
    Laukkanen, Jari A.
Reversible ureteral obstruction due to polyomavirus infection after percutaneous nephrostomy catheter placement.
  • DOI:
    10.1016/j.bbmt.2011.03.002
  • 发表时间:
    2011-10
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Khan, Hassan;Oberoi, Shilpa;Mahvash, Armeen;Sharma, Manish;Rondon, Gabriela;Alousi, Amin;Shpall, Elizabeth J.;Kontoyiannis, Dimitrios P.;Champlin, Richard E.;Ciurea, Stefan O.
  • 通讯作者:
    Ciurea, Stefan O.
Inverse Association of Handgrip Strength With Risk of Heart Failure
  • DOI:
    10.1016/j.mayocp.2020.09.040
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Laukkanen, Jari A.;Khan, Hassan;Kunutsor, Setor K.
  • 通讯作者:
    Kunutsor, Setor K.
Fractional-Order Investigation of Diffusion Equations via Analytical Approach
  • DOI:
    10.3389/fphy.2020.568554
  • 发表时间:
    2021-02-23
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Liu, Haobin;Khan, Hassan;Baleanu, Dumitru
  • 通讯作者:
    Baleanu, Dumitru
Prevalence and demographics of anxiety disorders: a snapshot from a community health centre in Pakistan.
  • DOI:
    10.1186/1744-859x-6-30
  • 发表时间:
    2007-11-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Khan, Hassan;Kalia, Saira;Naqvi, Haider
  • 通讯作者:
    Naqvi, Haider

Khan, Hassan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khan, Hassan', 18)}}的其他基金

Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    RGPIN-2019-05120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    RGPIN-2019-05120
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    DGECR-2019-00208
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    RGPIN-2019-05120
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2329858
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2409577
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
R3AI: Shifting Paradigms for a Robust, Reasoning, and Responsible Artificial Intelligence and its Adoption
R3AI:稳健、推理和负责任的人工智能的转变范式及其采用
  • 批准号:
    CFREF-2022-00051
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Canada First Research Excellence Fund
Development and application of robust estimation and artificial intelligence strategies on noisy and unreliable data
针对噪声和不可靠数据的鲁棒估计和人工智能策略的开发和应用
  • 批准号:
    566259-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
Warwick-KU Collaboration on Domain-Invariant Artificial Intelligence for Robust Analysis of Pathology Images
Warwick-KU 合作开发域不变人工智能,用于病理图像的稳健分析
  • 批准号:
    MC_PC_21014
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Intramural
Development and application of robust estimation and artificial intelligence strategies on noisy and unreliable data
针对噪声和不可靠数据的鲁棒估计和人工智能策略的开发和应用
  • 批准号:
    566259-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    RGPIN-2019-05120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
  • 批准号:
    2113736
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
  • 批准号:
    2037405
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Robust Artificial Intelligence Systems to Improve Security of Smartphone Users
强大的人工智能系统可提高智能手机用户的安全性
  • 批准号:
    RGPIN-2019-05120
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了