Machine learning methods that make sense to humans

对人类有意义的机器学习方法

基本信息

  • 批准号:
    RGPIN-2020-06720
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Machine learning methods are widely used in predictions and decision making, and people are affected more than ever by these algorithmic decisions. Our society has become significantly influenced by the use of AI and this in turn has raised a lot of concerns about AI's transparency, bias and fairness. Research directed towards the interpretability of AI has become a topic of intense interest in recent years. My research program on interpretability will proceed in two fundamental directions. The first is to develop novel methods that are designed with interpretability in mind. Despite the recent popularity of deep learning methods and their successful application in areas such as object recognition and machine translation, many other areas -especially in finance, insurance and, to some extent health- have been hesitant to benefit from advances in deep learning, mainly because of issues rooted in the transparency, trust, bias and safety of AI. Those are areas where most data are structured (as opposed to unstructured data such as audio and video). Decisions made based on a smaller number of features are more likely to be interpretable by human. I will revisit feature selection and develop methods that allow explaining the decision by referring to similar samples in the training set. This mimics how physicians often explain their decision by referring to similar cases in the past. I will further extend the idea to learning deep embedding spaces that can provide such explanations. Alternatively, I propose an approach for generating explanations from a semantic space. The second direction of the program seeks to develop model-agnostic methods for improving the interpretability of an existing black-box model. Here, interpretability may be seen as a post-hoc processing to shed light on how the model came to its decision, and if, what the model has learned makes sense to human. Along this line, I would like to examine methods that involve human-friendly concepts. Humans often explain their decisions by referring to concepts that are intuitive to humans but are not directly related to the prediction problem. Domain experts often have concepts that they care about and would like to examine if a machine learning model pays attention to them. International Data Corporation estimates that worldwide investment in AI will have grown from US$24 billion in 2018 to US$77.7 billion by 2022. The widespread use of AI implies an increasingly significant impact on society. The program results will help establish trust in AI and mitigate some of the ethical concerns about deploying AI.
机器学习方法被广泛应用于预测和决策,人们比以往任何时候都更容易受到这些算法决策的影响。人工智能的使用对我们的社会产生了巨大的影响,这反过来又引发了人们对人工智能的透明度、偏见和公平性的担忧。近年来,针对人工智能可解释性的研究已成为一个备受关注的话题。我对可解释性的研究计划将从两个基本方向进行。首先是开发新的方法,在设计时考虑到可解释性。尽管最近深度学习方法很受欢迎,并在物体识别和机器翻译等领域取得了成功的应用,但许多其他领域——尤其是金融、保险,在某种程度上还有健康领域——一直不愿从深度学习的进步中受益,主要是因为人工智能的透明度、信任、偏见和安全性等问题。在这些领域,大多数数据都是结构化的(与音频和视频等非结构化数据相反)。基于少量特征做出的决定更有可能被人类解释。我将重新讨论特征选择,并开发允许通过参考训练集中的相似样本来解释决策的方法。这模仿了医生通常通过参考过去的类似病例来解释他们的决定。我将进一步扩展这个想法,学习可以提供这种解释的深度嵌入空间。另外,我提出了一种从语义空间生成解释的方法。该计划的第二个方向是寻求发展与模型无关的方法,以提高现有黑盒模型的可解释性。在这里,可解释性可以被视为一种事后处理,以阐明模型是如何做出决定的,以及模型所学到的东西对人类是否有意义。沿着这条线,我想检查涉及人类友好概念的方法。人们通常通过引用对人类来说直观但与预测问题没有直接关系的概念来解释他们的决定。领域专家通常有他们关心的概念,并希望检查机器学习模型是否关注这些概念。国际数据公司估计,到2022年,全球对人工智能的投资将从2018年的240亿美元增长到777亿美元。人工智能的广泛使用意味着对社会的影响越来越大。该项目的结果将有助于建立对人工智能的信任,并减轻有关部署人工智能的一些道德担忧。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Komeili, Majid其他文献

Local Feature Selection for Data Classification
40-Hz ASSR for Measuring Depth of Anaesthesia During Induction Phase
Liveness Detection and Automatic Template Updating Using Fusion of ECG and Fingerprint
Continuous Authentication Using One-Dimensional Multi-Resolution Local Binary Patterns (1DMRLBP) in ECG Biometrics
Predictive modelling of Parkinson's disease progression based on RNA-Sequence with densely connected deep recurrent neural networks.
  • DOI:
    10.1038/s41598-022-25454-1
  • 发表时间:
    2022-12-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ahmed, Siraj;Komeili, Majid;Park, Jeongwon
  • 通讯作者:
    Park, Jeongwon

Komeili, Majid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Komeili, Majid', 18)}}的其他基金

Machine learning methods that make sense to humans
对人类有意义的机器学习方法
  • 批准号:
    RGPIN-2020-06720
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Auto-generating tactile from image for low vision and blind individuals
从图像中自动生成弱视和盲人的触觉
  • 批准号:
    558276-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Machine learning methods that make sense to humans
对人类有意义的机器学习方法
  • 批准号:
    RGPIN-2020-06720
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning methods that make sense to humans
对人类有意义的机器学习方法
  • 批准号:
    DGECR-2020-00326
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Auto-generating tactile from image for low vision and blind individuals
从图像中自动生成弱视和盲人的触觉
  • 批准号:
    558276-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Fellowship
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
  • 批准号:
    10732745
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
  • 批准号:
    10572582
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了