High-quality Shape Synthesis with User-guided Deep Neural Networks
通过用户引导的深度神经网络进行高质量形状合成
基本信息
- 批准号:RGPIN-2022-04903
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term goal of my research program is to develop methods for facilitating the creation of computer graphics content, especially 3D shapes. 3D content is important in a variety of applications, such as computer games, movies and animation, and architectural simulations. In the next period of funding, I propose to develop computational methods for synthesizing 3D shapes with deep neural networks (DNNs), where the synthesis can be controlled by users and the generated shapes are of high-quality. These methods can then be applied to facilitate the generation of different types of 3D content. Content creation is challenging since high-quality 3D shapes are commonly created by explicitly modeling the geometry of the shapes. This process involves the use of complex user interfaces by skilled artists in a time-consuming process requiring substantial training. Thus, during the last two decades, computer graphics research has also proposed approaches for facilitating the modeling of 3D shapes by non-expert users, such as parametric models and sketching interfaces. However, many of these methods either still require sufficient artistic skills from the users, or require considerable manual work for pre-processing of the data. In recent years, methods for synthesizing 3D content based on machine learning have sparked much interest, especially methods based on deep neural networks (DNNs), since DNNs offer several advantages over traditional methods, such as easier training data preparation, no need to handcraft feature extraction methods, high generalization capabilities, and generative models that allow users to synthesize new data resembling the training data. However, DNNs currently have certain limitations that prevent them from being easily used for shape modeling. In this context, the goal of my research program for the next period of funding is to investigate solutions for improving the analysis and synthesis of 3D shapes with DNNs. In more detail: (1) We propose to develop methods for enabling more direct user control in the generation of 3D shapes with DNNs, so that users are able to design shapes according to their goals; (2) We propose to use representations that allow to generate higher-quality shapes compared to the state-of-the-art, such as representations based on procedural models that generate editable shapes with low complexity; (3) We propose to use procedural models to generate synthetic data, which can be used for training shape analysis DNNs with less manually-prepared data, or for evaluating DNN-based methods in controlled settings. The significance of the proposed work is that the developed solutions will enable the guided synthesis of high-quality shapes with less manual work. This will result in new software tools that will improve the current practices in industries that require shape modeling, allowing users of this technology to create a diversity and volume of content never seen before with reduced costs.
我的研究计划的长期目标是开发促进计算机图形内容,特别是3D形状的创建的方法。3D内容在各种应用程序中非常重要,例如计算机游戏、电影和动画以及建筑模拟。在下一个资助期间,我建议开发使用深度神经网络(DNN)合成3D形状的计算方法,其中合成可以由用户控制,并且生成的形状具有高质量。然后可以应用这些方法来促进不同类型的3D内容的生成。 内容创建是具有挑战性的,因为高质量的3D形状通常是通过显式地对形状的几何形状建模来创建的。这一过程涉及熟练的艺术家在一个耗时的过程中使用复杂的用户界面,需要大量的培训。因此,在过去的二十年中,计算机图形学的研究也提出了方法,以促进非专业用户的三维形状建模,如参数模型和草图界面。然而,这些方法中的许多仍然需要用户具有足够的艺术技能,或者需要大量的手工工作来预处理数据。近年来,基于机器学习的3D内容合成方法引起了人们的极大兴趣,特别是基于深度神经网络(DNN)的方法,因为DNN提供了几个优于传统方法的优点,例如更容易的训练数据准备,无需手工制作特征提取方法,高泛化能力以及生成模型,允许用户合成类似于训练数据的新数据。然而,DNN目前具有某些限制,使其无法轻松用于形状建模。在这种情况下,我的研究计划的下一个资助期的目标是研究解决方案,以改善与DNN的3D形状的分析和合成。更详细地说:(1)我们建议开发方法,用于在使用DNN生成3D形状时实现更直接的用户控制,以便用户能够根据他们的目标设计形状;(2)我们建议使用与最新技术相比允许生成更高质量形状的表示,例如基于生成低复杂度可编辑形状的程序模型的表示;(3)我们建议使用程序模型来生成合成数据,这些数据可以用于训练形状分析DNN,而手动准备的数据较少,或者用于在受控环境中评估基于DNN的方法。所提出的工作的意义在于,所开发的解决方案将使指导合成高质量的形状与更少的手工工作。这将产生新的软件工具,这些工具将改善需要形状建模的行业的当前实践,使该技术的用户能够以更低的成本创建前所未有的多样性和大量内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
vanKaick, Oliver其他文献
vanKaick, Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('vanKaick, Oliver', 18)}}的其他基金
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
High-level Shape Representations for Content Creation
用于内容创建的高级形状表示
- 批准号:
RGPIN-2015-05407 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
中医药协同SHAPE-T细胞治疗晚期胰腺癌的临床研究和免疫评价
- 批准号:2024PT012
- 批准年份:2024
- 资助金额:17.5 万元
- 项目类别:省市级项目
相似海外基金
Synthesis of metal oxide nanoparticles with controlled shape and size utilizing organic molecular cages
利用有机分子笼合成形状和尺寸受控的金属氧化物纳米颗粒
- 批准号:
22K14690 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable Continuous Synthesis and Shape Engineering of Metal-Organic Frameworks for Gas Storage Applications
用于气体储存应用的金属有机框架的可持续连续合成和形状工程
- 批准号:
2115062 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Depelopment of high-quality speech analysis-synthesis systems with ability to extract 3D vocal tract shape and vocal cord vibration signal precisely
开发能够精确提取3D声道形状和声带振动信号的高质量语音分析合成系统
- 批准号:
17K00253 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spray Synthesis of Shape-Defined Nanocrystals
喷雾合成定形纳米晶体
- 批准号:
1608711 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Microfluidic synthesis of shape-controlled polysaccharide hydrogel drug microcarriers
形状控制多糖水凝胶药物微载体的微流控合成
- 批准号:
16K04916 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthesis and characterization of flexible smart hybrid with specific shape
特定形状柔性智能杂化材料的合成与表征
- 批准号:
15H02296 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Synthesis of Metal-Organic Framework Particles with Controlled Size, Shape, and Adsorption Characteristics
具有受控尺寸、形状和吸附特性的金属有机框架颗粒的合成
- 批准号:
26630391 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
International Collaboration in Chemistry: Synthesis and Assembly of Shape-Adjustable, Reconfigurable Nanocrystals
化学国际合作:形状可调、可重构纳米晶体的合成和组装
- 批准号:
1303757 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Precise Synthesis of Star/Ball Shape Polymer Supported Single-Site Catalysts for Concerted Catalysis
星/球状聚合物负载单中心协同催化催化剂的精确合成
- 批准号:
24656491 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
CAREER: Genetically Modifiable Shape-Tunable Protein Nanotubes as Templates for Controlled Nano-Synthesis and Assembly
职业:基因改造形状可调蛋白质纳米管作为受控纳米合成和组装的模板
- 批准号:
0847758 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




