Towards a Robust Theory of Adaptive Learning Algorithms
迈向稳健的自适应学习算法理论
基本信息
- 批准号:RGPIN-2017-05085
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning is a set of techniques for programming computers by feeding them data so that they can help with tasks when our understanding of how to turn data into decisions is limited. As such, machine learning is a key technology for addressing various challenges regardless of whether they arise in science, economics, manufacturing, technology development or any other area. Similarly to other sub-disciplines of computing science, the role of theory in machine learning is to guide the design and analysis of algorithms. Such learning theory helps to determine which problems can or cannot be learned efficiently, and, when a problem is "learnable"', how much data is needed to reach a desired performance level.Most research in machine learning focuses on worst-case guarantees, which leaves a significant gap between the predictions of existing theory and the everyday experience of machine learning practitioners. In particular, over many years (if not decades), practitioners have collected plenty of evidence that in practice algorithms with meager or no worst-case guarantees often perform quite well on some particular task of practical interest, while provably nearly worst-case optimal learning algorithms can behave poorly on the same tasks. The most recent surge of examples involve deep neural networks, whose unprecedented performance is anything but expected given our state of knowledge.A potential solution to this dilemma is to develop algorithms that have the ability to adapt to the "easiness", or "regularities" of data, if and when such regularities exist. Similarly to how we expect a "clever" algorithm to solve a linear system of equations with fewer algebraic operations when the underlying matrix is triangular, adaptive algorithms are also expected to make better use of information when used on data that has some extra structure. Adaptivity is a much studied idea both in statistics and machine learning. However, so far adaptivity has been studied in a case-by-case fashion and there is no comprehensive theory that would help one to design and analyze adaptive algorithms.The first goal of this proposal is to fill this void. In particular, the main aim is to develop a robust theory of optimally adaptive learning algorithms and also to demonstrate the usefulness of the theory by applying it to some specific learning scenarios. The robustness of the new theory will come from making minimal assumptions on the data generating mechanism borrowing ideas from the framework of online learning, while the notion of optimal adaptivity arises from the novel idea of studying how well any learning algorithm amongst those that are robust in some worst-case sense can behave on a single, individual problem instance. The main benefit of this approach is that adaptivity is defined without relying on ad-hoc notions of data regularity and leads to "natural" notions of regularity instead.
机器学习是一套通过向计算机提供数据来对计算机进行编程的技术,以便当我们对如何将数据转化为决策的理解有限时,它们可以帮助完成任务。因此,机器学习是解决各种挑战的关键技术,无论这些挑战是出现在科学、经济、制造、技术开发还是任何其他领域。与计算科学的其他子学科类似,理论在机器学习中的作用是指导算法的设计和分析。这种学习理论有助于确定哪些问题可以或不能有效地学习,以及当一个问题是“可学习的”时,需要多少数据才能达到期望的性能水平。大多数机器学习的研究都集中在最坏情况下的保证,这使得现有理论的预测与机器学习实践者的日常经验之间存在很大的差距。特别是,多年来(如果不是几十年的话),从业者已经收集了大量的证据表明,在实践中,具有微薄或没有最坏情况保证的算法通常在实际感兴趣的某些特定任务上表现得很好,而可证明的接近最坏情况的最佳学习算法在相同的任务上表现不佳。最近激增的例子涉及深度神经网络,其前所未有的性能在我们的知识水平下是无法预期的。解决这一困境的一个潜在解决方案是开发能够适应数据的“容易性”或“易变性”的算法,如果这种易变性存在的话。类似于我们如何期望一个“聪明”的算法来解决一个线性方程组,当底层矩阵是三角形时,自适应算法也被期望在具有一些额外结构的数据上使用时更好地利用信息。自适应性在统计学和机器学习中都是一个被广泛研究的概念。然而,到目前为止,自适应性一直是在个案的方式进行研究,并没有全面的理论,这将有助于设计和分析自适应算法。特别是,主要目的是开发一种鲁棒的最佳自适应学习算法理论,并通过将其应用于一些特定的学习场景来证明该理论的有用性。新理论的鲁棒性将来自于对数据生成机制的最小假设,从在线学习的框架中借用思想,而最佳自适应性的概念则来自于一个新的想法,即研究在某些最坏情况下鲁棒的学习算法中,任何学习算法在单个问题实例上的表现如何。这种方法的主要好处是自适应性的定义不依赖于数据规律性的特殊概念,而是导致规律性的“自然”概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Szepesvari, Csaba其他文献
Bandit based Monte-Carlo planning
- DOI:
10.1007/11871842_29 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0
- 作者:
Kocsis, Levente;Szepesvari, Csaba - 通讯作者:
Szepesvari, Csaba
Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path
- DOI:
10.1007/s10994-007-5038-2 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:7.5
- 作者:
Antos, Andras;Szepesvari, Csaba;Munos, Remi - 通讯作者:
Munos, Remi
Model selection in reinforcement learning
- DOI:
10.1007/s10994-011-5254-7 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:7.5
- 作者:
Farahmand, Amir-massoud;Szepesvari, Csaba - 通讯作者:
Szepesvari, Csaba
Stochastic Optimization in a Cumulative Prospect Theory Framework
- DOI:
10.1109/tac.2018.2822658 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:6.8
- 作者:
Jie, Cheng;Prashanth, L. A.;Szepesvari, Csaba - 通讯作者:
Szepesvari, Csaba
Exploration-exploitation tradeoff using variance estimates in multi-armed bandits
- DOI:
10.1016/j.tcs.2009.01.016 - 发表时间:
2009-04-28 - 期刊:
- 影响因子:1.1
- 作者:
Audibert, Jean-Yves;Munos, Remi;Szepesvari, Csaba - 通讯作者:
Szepesvari, Csaba
Szepesvari, Csaba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Szepesvari, Csaba', 18)}}的其他基金
Towards a Robust Theory of Adaptive Learning Algorithms
迈向稳健的自适应学习算法理论
- 批准号:
RGPIN-2017-05085 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Towards a Robust Theory of Adaptive Learning Algorithms
迈向稳健的自适应学习算法理论
- 批准号:
RGPIN-2017-05085 - 财政年份:2020
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Towards a Robust Theory of Adaptive Learning Algorithms
迈向稳健的自适应学习算法理论
- 批准号:
RGPIN-2017-05085 - 财政年份:2019
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Control of a ultrafiltration-based water-treatment plant using reinforcement learning: testing on a bench-scale system
使用强化学习控制基于超滤的水处理厂:在实验室规模系统上进行测试
- 批准号:
505305-2016 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
Engage Plus Grants Program
Interactive online learning
互动在线学习
- 批准号:
341723-2012 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Interactive online learning
互动在线学习
- 批准号:
341723-2012 - 财政年份:2015
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Interactive online learning
互动在线学习
- 批准号:
341723-2012 - 财政年份:2014
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Interactive online learning
互动在线学习
- 批准号:
341723-2012 - 财政年份:2013
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Interactive online learning
互动在线学习
- 批准号:
341723-2012 - 财政年份:2012
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Predictive algorithm development for positional error estimation and correction based on multiple inertial measurement units
基于多个惯性测量单元的位置误差估计和校正的预测算法开发
- 批准号:
430585-2012 - 财政年份:2012
- 资助金额:
$ 4.9万 - 项目类别:
Engage Grants Program
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Continuing Grant
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
- 批准号:
2244976 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Continuing Grant
Theory and Application for Robust and High-Performance Systems Programming Languages
鲁棒高性能系统编程语言的理论与应用
- 批准号:
22KJ0561 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208412 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Learning robust behavioural game theory models
学习稳健的行为博弈论模型
- 批准号:
574152-2022 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208456 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Development of complex network theory for robust transportation netowrks against partial disruption
复杂网络理论的发展,以实现稳健的交通网络,防止部分中断
- 批准号:
22K14341 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Towards robust, interpretable deep learning via communication theory and neuro-inspiration
EAGER:通过沟通理论和神经灵感实现稳健、可解释的深度学习
- 批准号:
2224263 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Robust and Reliable Mathematical Models for Biomolecular Data via Differential Geometry and Graph Theory
通过微分几何和图论建立稳健可靠的生物分子数据数学模型
- 批准号:
2151802 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant