Formal methods for reliable, high-performance quantum computing

可靠、高性能量子计算的形式化方法

基本信息

  • 批准号:
    RGPIN-2022-03319
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research program aims to understand the real-world computational capabilities and practical advantages of quantum computers. On a theoretical level, quantum computation promises the ability to solve certain problems exponentially faster than the best known classical algorithms. Notable examples include integer factorization and computing discrete logarithms, which together break many conventional cryptographic methods, as well as the simulation of quantum systems. The latter in particular, serving as the original motivation for the development of quantum computers, has the potential for far-reaching impacts on society by facilitating advances in drug, material, and chemical design. A canonical first real-world application is the simulation of nitrogenase, an enzyme involved in the process of nitogren fixation needed for fertiziler production, which has resisted simulation even with modern super-computers. Advances in nitrogen and carbon fixation could have deep impacts on our ability to fight climate change. In practice however, executing large-scale quantum algorithms on real hardware involves a high degree of overhead, due to both the constraints of the computational model and the need for error correction. To properly characterize the advantages of error-corrected quantum computers, a practical accounting of this overhead in terms of concrete computational resources (e.g. time, number of qubits, classical processing power), known as resource estimation, is needed. On the other hand, quantum hardware is rapidly approaching potentially useful sizes and the practical applications of these smaller-scale, noisy devices needs to be determined through use and experimentation. In both cases, effective software tools are needed to program and compile these algorithms. Moreover, as quantum programs are exceedingly difficult to debug and next to impossible to simulate, methods of establishing the correctness of this quantum code are necessary. While for near-term applications errors often lead to headaches or failed experiments, for large-scale resource estimation an unreliable process can erode confidence in the estimates or lead to wildly inaccurate ones. The goal of this research program is to enable the development of reliable, high-performance and portable quantum software. I plan to develop novel methods for mathematically reasoning about quantum computation and apply these to the specification, formal verification, and optimization of quantum programs. I intend to integrate these into low-level quantum programming and specification languages so that optimized libraries of quantum code can be written and verified once, then re-used for years to come. I expect the contributions of this research program will have far reaching impacts on the practical usage and analysis of quantum computers by allowing algorithms to be easily and reliably translated from theory into practice.
我的研究项目旨在了解量子计算机的现实计算能力和实际优势。在理论层面上,量子计算有望比最知名的经典算法更快地以指数方式解决某些问题。值得注意的例子包括整数因子分解和计算离散算法,它们一起打破了许多传统的加密方法,以及量子系统的模拟。特别是后者,作为量子计算机发展的原始动力,通过促进药物,材料和化学设计的进步,有可能对社会产生深远的影响。典型的第一个现实世界的应用是模拟固氮酶,这是一种参与肥料生产所需的固氮酶固定过程的酶,即使用现代超级计算机也无法模拟。氮和碳固定方面的进展可能对我们应对气候变化的能力产生深远影响。然而,在实践中,由于计算模型的约束和纠错的需要,在真实的硬件上执行大规模量子算法涉及高度的开销。为了正确地描述纠错量子计算机的优点,需要在具体的计算资源(例如时间,量子位数,经典处理能力)方面对这种开销进行实际核算,称为资源估计。另一方面,量子硬件正在迅速接近潜在有用的尺寸,这些小规模、有噪声的设备的实际应用需要通过使用和实验来确定。在这两种情况下,需要有效的软件工具来编程和编译这些算法。此外,由于量子程序非常难以调试,几乎不可能模拟,因此建立这种量子代码的正确性的方法是必要的。对于短期应用程序,错误通常会导致头痛或失败的实验,而对于大规模资源估计,不可靠的过程可能会削弱对估计的信心或导致非常不准确的估计。该研究计划的目标是开发可靠,高性能和便携式量子软件。我计划开发量子计算数学推理的新方法,并将其应用于量子程序的规范,形式验证和优化。我打算将这些集成到低级量子编程和规范语言中,以便优化的量子代码库可以一次性编写和验证,然后在未来几年内重复使用。我希望这个研究项目的贡献将对量子计算机的实际使用和分析产生深远的影响,使算法能够轻松可靠地从理论转化为实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy, Matthew其他文献

On the controlled-NOT complexity of controlled-NOT-phase circuits
  • DOI:
    10.1088/2058-9565/aad8ca
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Amy, Matthew;Azimzadeh, Parsiad;Mosca, Michele
  • 通讯作者:
    Mosca, Michele
Art by firelight? Using experimental and digital techniques to explore Magdalenian engraved plaquette use at Montastruc (France).
  • DOI:
    10.1371/journal.pone.0266146
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Needham, Andy;Wisher, Izzy;Langley, Andrew;Amy, Matthew;Little, Aimee
  • 通讯作者:
    Little, Aimee
Polynomial-Time T-Depth Optimization of Clifford plus T Circuits Via Matroid Partitioning
A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits

Amy, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy, Matthew', 18)}}的其他基金

Formal methods for reliable, high-performance quantum computing
可靠、高性能量子计算的形式化方法
  • 批准号:
    DGECR-2022-00363
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Quantum Computing
量子计算
  • 批准号:
    CRC-2021-00260
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Verification and repair of faulty software systems
故障软件系统的验证和修复
  • 批准号:
    475593-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Static Analysis of Concurrent Programs
并发程序的静态分析
  • 批准号:
    415729-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sedimen
关键沿海地区的生物地球化学循环:开发新方法来可靠测量可渗透沉积物中的地球化学通量
  • 批准号:
    2892737
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
  • 批准号:
    10572582
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Reliable logic design and test methods for error tolerant application
容错应用的可靠逻辑设计和测试方法
  • 批准号:
    23K11037
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Rugged, Reliable, Portable, Safe, and Simple Naloxone HCl Auto-Injector forLife-Saving Treatment of Opioid Overdose
坚固、可靠、便携式、安全且简单的盐酸纳洛酮自动注射器,用于挽救阿片类药物过量的生命治疗
  • 批准号:
    10764158
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
  • 批准号:
    10566299
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Optimizing methods of clinical sample processing for scRNA-seq and mechanistic studies in sepsis to enable reliable, reproducible, and high-yield multi-center collection efforts
优化脓毒症 scRNA-seq 和机制研究的临床样本处理方法,以实现可靠、可重复和高产的多中心采集工作
  • 批准号:
    10571958
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
OpenSwarm: Orchestration and Programming ENergy-aware and collaborative Swarms With AI-powered Reliable Methods
OpenSwarm:利用人工智能驱动的可靠方法编排和编程能源感知和协作群
  • 批准号:
    10048272
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
ContRol methods for rELiable sensIng informAtion in interConnected Energy systems
互联能源系统中可靠传感信息的控制方法
  • 批准号:
    EP/W024411/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
  • 批准号:
    10637895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Full-stack automation for reliable and reproducible MRS of brain cancer
全栈自动化实现可靠且可重复的脑癌 MRS
  • 批准号:
    10632895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了