Safe and efficient robot autonomy in unstructured and dynamic environments

在非结构化和动态环境中安全高效的机器人自主

基本信息

  • 批准号:
    RGPIN-2022-03578
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The potential of autonomous mobile robots is enormous, particularly if they can operate safely and reliably in unstructured environments such as workplaces, public spaces, and roadways. They can be used to increase productivity, provide assistance to those in need, perform repetitive and dull jobs, and to fill the labour shortages seen across industries ranging from manufacturing to agriculture, to trucking. This potential has resulted in a surge of interest in industry, with many of the biggest technology companies such as Amazon, Apple, Google, and Shopify all pursuing robotics and autonomy. However, while robot autonomy is continuously improving, it is still prone to unexpected failures, resulting in unsafe and/or inefficient operation. Fundamental research is needed into how robots plan their motion in uncertain environments, how they assess safety around moving objects and obstacles, how they coordinate their efforts to work on a large-scale, and how they interact with human supervisors to improve performance and ensure safety. The long-term goal driving this research is to achieve safe and efficient operation of multiple robots in unstructured and dynamic environments. This research program will pursue two directions to improve robot autonomy. The first is to develop fundamental advances in robot motion planning around moving obstacles that enable robots to better assess safety and risk. This includes methods to predict risk of future motions, and to reduce that risk by actively sensing critical portions of the environment and by inferring information about the environment through other's actions. The second direction is for robots to utilize human supervisors to improve performance over time. Supervisors are commonly used to (tele-) operate a robot when needed or to provide guidance to a robot using an interface. However, the current paradigm is to use supervisors in a reactive manner, filling in for the deficiencies of the autonomous robots when necessary. This research program will instead consider the problem of improving performance and safety of the collective supervisor-robot team. We will develop algorithms for robots that proactively leverage supervisors when needed, avoid overloading supervisors, and improve performance over time by learning from the supervisor's expertise. The research program will generate new algorithms for autonomy that increase the capability of robots in unstructured environments. These fundamental advances will enable robots to operate safely and efficiently around humans, forming the basis for a range of new robotic applications in industrial cleaning, warehousing and logistics, agriculture, and autonomous driving. The research program will train personnel that are positioned at the forefront of a growing and transformative industry of strategic importance to Canada.
自主移动的机器人的潜力是巨大的,特别是如果它们可以在非结构化环境中安全可靠地运行,如工作场所,公共场所和道路。它们可以用来提高生产力,为有需要的人提供帮助,从事重复性和枯燥的工作,并填补从制造业到农业再到卡车运输等行业的劳动力短缺。这种潜力导致了人们对工业的兴趣激增,亚马逊、苹果、谷歌和Shopify等许多最大的科技公司都在追求机器人和自动化。然而,虽然机器人的自主性不断提高,但仍然容易出现意外故障,导致不安全和/或效率低下的操作。需要对机器人如何在不确定的环境中规划运动进行基础研究,如何评估移动物体和障碍物周围的安全性,如何协调大规模工作,以及如何与人类监督员互动以提高性能并确保安全。推动这项研究的长期目标是在非结构化和动态环境中实现多个机器人的安全和高效操作。该研究计划将从两个方向来提高机器人的自主性。首先是在机器人围绕移动障碍物的运动规划方面取得根本性进展,使机器人能够更好地评估安全和风险。这包括预测未来运动的风险的方法,以及通过主动感测环境的关键部分和通过其他人的动作推断关于环境的信息来降低风险的方法。第二个方向是机器人利用人类监督员来提高性能。监督者通常用于在需要时(远程)操作机器人或使用接口向机器人提供指导。然而,目前的模式是以反应的方式使用监督者,在必要时填补自主机器人的不足。这项研究计划将考虑提高集体监督机器人团队的性能和安全性的问题。我们将为机器人开发算法,在需要时主动利用监督者,避免监督者过载,并通过学习监督者的专业知识来提高性能。该研究计划将生成新的自主算法,以提高机器人在非结构化环境中的能力。这些根本性的进步将使机器人能够在人类周围安全有效地运行,为工业清洁,仓储和物流,农业和自动驾驶等一系列新的机器人应用奠定基础。该研究计划将培养处于对加拿大具有战略重要性的不断增长和变革性行业前沿的人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Smith, Stephen其他文献

Lesion probability maps of white matter hyperintensities in elderly individuals - Results of the Austrian stroke prevention study
  • DOI:
    10.1007/s00415-006-0164-5
  • 发表时间:
    2006-08-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Enzinger, Christian;Smith, Stephen;Matthews, Paul M.
  • 通讯作者:
    Matthews, Paul M.
Genetic Diversity and Modern Plant Breeding
Phenomic and genomic prediction of yield on multiple locations in winter wheat.
  • DOI:
    10.3389/fgene.2023.1164935
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jackson, Robert;Buntjer, Jaap B.;Bentley, Alison R.;Lage, Jacob;Byrne, Ed;Burt, Chris;Jack, Peter;Berry, Simon;Flatman, Edward;Poupard, Bruno;Smith, Stephen;Hayes, Charlotte;Barber, Tobias;Love, Bethany;Gaynor, R. Chris;Gorjanc, Gregor;Howell, Phil;Mackay, Ian J.;Hickey, John M.;Ober, Eric S.
  • 通讯作者:
    Ober, Eric S.
Possible Cross-Reactivity of Feline and White-Tailed Deer Antibodies against the SARS-CoV-2 Receptor Binding Domain.
  • DOI:
    10.1128/jvi.00250-22
  • 发表时间:
    2022-04-27
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Hancock, Trevor J.;Hickman, Peyton;Kazerooni, Niloo;Kennedy, Melissa;Kania, Stephen A.;Dennis, Michelle;Szafranski, Nicole;Gerhold, Richard;Su, Chunlei;Masi, Tom;Smith, Stephen;Sparer, Tim E.
  • 通讯作者:
    Sparer, Tim E.
Why Tourists Choose Airbnb: A Motivation-Based Segmentation Study
  • DOI:
    10.1177/0047287517696980
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Guttentag, Daniel;Smith, Stephen;Havitz, Mark
  • 通讯作者:
    Havitz, Mark

Smith, Stephen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Smith, Stephen', 18)}}的其他基金

Autonomous Systems
自治系统
  • 批准号:
    CRC-2021-00107
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Real-Time Motion Planning for Complex Robotic Tasks
复杂机器人任务的实时运动规划
  • 批准号:
    RGPIN-2016-04156
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Functional MRI Investigations Characterizing an Emo-Motoric Network of Emotional Experience
表征情绪体验的情绪运动网络的功能 MRI 研究
  • 批准号:
    RGPIN-2014-03928
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Systems
自治系统
  • 批准号:
    CRC-2016-00258
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Real-Time Motion Planning for Complex Robotic Tasks
复杂机器人任务的实时运动规划
  • 批准号:
    RGPIN-2016-04156
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Functional MRI Investigations Characterizing an Emo-Motoric Network of Emotional Experience
表征情绪体验的情绪运动网络的功能 MRI 研究
  • 批准号:
    RGPIN-2014-03928
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Systems
自治系统
  • 批准号:
    CRC-2016-00258
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs
Shared Decision Making and Progressive Automation for Manufacturing Assembly
制造装配的共享决策和渐进式自动化
  • 批准号:
    493922-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Strategic Projects - Group
Real-Time Motion Planning for Complex Robotic Tasks
复杂机器人任务的实时运动规划
  • 批准号:
    RGPIN-2016-04156
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Systems
自治系统
  • 批准号:
    CRC-2016-00258
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Safe and Efficient Robot Learning from Demonstration in the Real World
职业:安全高效的机器人从现实世界的演示中学习
  • 批准号:
    2323384
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
Safe and Efficient Robot Learning in Human-Centric Environments
以人为本的环境中安全高效的机器人学习
  • 批准号:
    RGPIN-2021-04152
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Develop Intelligent Robot Systems for Efficient and Safe Robotic Manipulations in Unstructured Human and Space Environments
开发智能机器人系统,在非结构化人类和空间环境中进行高效、安全的机器人操作
  • 批准号:
    RGPIN-2022-03807
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Safe and Efficient Robot Learning in Human-Centric Environments
以人为本的环境中安全高效的机器人学习
  • 批准号:
    DGDND-2021-04152
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132846
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132848
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Safe and Efficient Robot Learning in Human-Centric Environments
以人为本的环境中安全高效的机器人学习
  • 批准号:
    DGDND-2021-04152
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Safe and Efficient Robot Learning in Human-Centric Environments
以人为本的环境中安全高效的机器人学习
  • 批准号:
    RGPIN-2021-04152
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Safe and Efficient Robot Learning from Demonstration in the Real World
职业:安全高效的机器人从现实世界的演示中学习
  • 批准号:
    1749204
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了