Optimized Terabit-per-second Chip-to-Chip Communication over Heterogeneous Interconnect Fabrics

通过异构互连结构优化每秒太比特的芯片间通信

基本信息

  • 批准号:
    555486-2020
  • 负责人:
  • 金额:
    $ 11.25万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our ability to communicate information into and out of integrated circuits is increasingly a bottleneck in all forms of computation and communication. Integrated circuit (IC) packaging and interconnect technologies have not, unfortunately, benefited from Moore's Law scaling. Thus, it has fallen to the designers of transmitter/receiver (transceiver) circuits to communicate information at higher speed over a fixed number of links within a relatively fixed power budget. Transceiver energy efficiency, density, and data rates have simultaneously improved for over a decade, but recently transceiver circuits have begun occupying an increasing fraction of the cost and power consumption of data-intensive ICs. Thus, paradigm shifts are required in the wide diversity of chip-to-chip interconnect inside modern infrastructure and enterprise computing, storage, and networking equipment. Typically, only a small minority of links exhibit worst-case combinations of channel loss and noise. The vast majority of links exhibit only modest loss and noise. Unfortunately, transceivers have been conservatively overdesigned for the worst-case conditions. Such over-design will be intolerable at next-generation data rates. Thus, this project seeks modulation and coding techniques suited to a wide diversity of link conditions, and circuits optimized for the lowest possible power consumption in all scenarios. We will also research optical communication technologies that will allow low-power and low-cost optical links to replace the worst-case electrical links in current systems. Furthermore, we seek methodologies for intelligent automatic co-optimization of all transceiver circuits (hundreds, or even thousands) in a piece of equipment to meet its instantaneous performance demands with minimal power consumption. The project will be undertaken with an industry-leading partner, whose support includes access to advanced FinFET IC technologies not normally available to academics. The unique training afforded to students and the research outcomes themselves promise tremendous benefits to Canada's large ICT sector, which increasingly underlies our society as a whole.
我们将信息传递到集成电路内外的能力越来越成为所有形式的计算和通信的瓶颈。不幸的是,集成电路(IC)封装和互连技术并没有从摩尔定律缩放中受益。因此,发射机/接收机(收发机)电路的设计者必须在相对固定的功率预算内通过固定数量的链路以更高的速度传送信息。十多年来,收发器的能效、密度和数据速率一直在不断提高,但最近,收发器电路在数据密集型IC的成本和功耗中所占的比例越来越大。因此,在现代基础设施和企业计算、存储和网络设备内部的芯片到芯片互连的广泛多样性中,需要范式转变。 通常情况下,只有一小部分链路会出现信道损耗和噪声的最坏组合。 绝大多数链路仅表现出适度的损耗和噪声。 不幸的是,收发器已经保守地过度设计了最坏的情况。 这种过度设计在下一代数据速率下将是不可容忍的。 因此,该项目寻求适合各种链路条件的调制和编码技术,以及在所有情况下尽可能降低功耗的优化电路。 我们还将研究光通信技术,使低功耗和低成本的光链路取代当前系统中最差情况下的电链路。 此外,我们寻求智能自动协同优化的所有收发器电路(数百,甚至数千)在一件设备,以满足其瞬时性能需求,最小的功耗的方法。 该项目将与行业领先的合作伙伴合作,其支持包括获得学术界通常无法获得的先进FinFET IC技术。 为学生提供的独特培训和研究成果本身为加拿大庞大的信息和通信技术部门带来了巨大的利益,该部门日益成为我们整个社会的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ChanCarusone, AnthonyA其他文献

ChanCarusone, AnthonyA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Optimized Terabit-per-second Chip-to-Chip Communication over Heterogeneous Interconnect Fabrics
通过异构互连结构优化每秒太比特的芯片间通信
  • 批准号:
    555486-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Alliance Grants
Optimized Terabit-per-second Chip-to-Chip Communication over Heterogeneous Interconnect Fabrics
通过异构互连结构优化每秒太比特的芯片间通信
  • 批准号:
    555486-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Alliance Grants
Terabit-per-Second Coherent Optical Fiber Communications
太比特每秒相干光纤通信
  • 批准号:
    4736-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
Terabit-per-Second Coherent Optical Fiber Communications
太比特每秒相干光纤通信
  • 批准号:
    4736-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
EARS: Terabit-per-second Scale Networking: Design to Field Trials, Lab to Tower
EARS:太比特每秒规模的网络:设计到现场试验、实验室到塔楼
  • 批准号:
    1642929
  • 财政年份:
    2016
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Standard Grant
Terabit-per-second die-to-die links over low-cost packaging substrates
通过低成本封装基板实现每秒太比特的芯片间链路
  • 批准号:
    474691-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Collaborative Research and Development Grants
Terabit-per-Second Coherent Optical Fiber Communications
太比特每秒相干光纤通信
  • 批准号:
    4736-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
Terabit-per-Second Coherent Optical Fiber Communications
太比特每秒相干光纤通信
  • 批准号:
    4736-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
Terabit-per-Second Coherent Optical Fiber Communications
太比特每秒相干光纤通信
  • 批准号:
    4736-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
Terabit per second Data Processing to Extract Features of Interest in Enormous Amount of Data
每秒太比特的数据处理可提取海量数据中感兴趣的特征
  • 批准号:
    1202575
  • 财政年份:
    2012
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了