Hierarchical Distributed Machine Learning
分层分布式机器学习
基本信息
- 批准号:580546-2022
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Distributed Machine Learning is an emerging research area where user data cannot be centrally located at a single site but must be distributed across multiple devices that must cooperatively participate in the model training and inference tasks. In recent years there has been a significant interest from both the industry and academia to address various challenges in this area and a number of open source software libraries that provide support for distributed training and prediction have been developed. Nevertheless, a number of important challenges still remain to be addressed. In current systems the user nodes transmit raw gradient vectors computed on the locally available training data, which can leak sensitive information. Current solutions that encrypt the gradient vectors are based on secure multi-party computation techniques that have high communication complexity and do not scale to a large number of participating users. Secondly the models that should be trained may consist of millions of parameters and the transmission of raw gradient vectors would be bandwidth intensive. The proposed research will address these challenges by following two key approaches: (1) apply principles from cryptography to develop privacy preserving methods and (2) develop hierarchical clustering among users to improve efficiency. Our research methodology will also incorporate fairness criteria i.e., by design, variates such as sex, demographics, gender, race, ethnicity and other factors will not influence the decision making of the proposed algorithms. In collaboration with our industry partners --- Hitachi Solutions and Filament AI --- the proposed research will lead to real-world impact on a number of sectors including industrial automation, healthcare, self-driving cars and smart buildings. The HQP involved in the research project will be a diverse team that will be actively involved in a number of outreach activities promoting EDI initiatives, be trained in cutting edge research in machine learning and communication systems and will closely interact with both the industry partners.
分布式机器学习是一个新兴的研究领域,其中用户数据不能集中位于单个站点,而是必须分布在多个设备上,这些设备必须协同参与模型训练和推理任务。近年来,工业界和学术界都对解决这一领域的各种挑战产生了浓厚的兴趣,并且已经开发了许多为分布式训练和预测提供支持的开源软件库。然而,仍有一些重要挑战有待解决。在当前的系统中,用户节点传输在本地可用的训练数据上计算的原始梯度向量,这可能泄漏敏感信息。加密梯度向量的当前解决方案是基于安全多方计算技术,其具有高通信复杂度并且不能扩展到大量参与用户。其次,应该训练的模型可能由数百万个参数组成,并且原始梯度向量的传输将是带宽密集型的。拟议的研究将通过以下两个关键方法来解决这些挑战:(1)应用密码学原理来开发隐私保护方法;(2)在用户之间开发层次聚类以提高效率。我们的研究方法也将纳入公平标准,即,通过设计,诸如性别、人口统计、性别、种族、民族和其它因素的变量将不会影响所提出的算法的决策。通过与我们的行业合作伙伴Hitachi Solutions和Filament AI合作,拟议的研究将对工业自动化、医疗保健、自动驾驶汽车和智能建筑等多个领域产生现实影响。参与研究项目的HQP将是一个多元化的团队,将积极参与一些推广EDI倡议的外联活动,接受机器学习和通信系统前沿研究的培训,并将与行业合作伙伴密切互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khisti, AshishAJ其他文献
Khisti, AshishAJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER
通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒
- 批准号:
EP/Y036301/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
- 批准号:
23H00464 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240788 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Accelerated distributed stochastic optimization methods and applications in machine learning
加速分布式随机优化方法及其在机器学习中的应用
- 批准号:
2208394 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
CAREER: Towards a Communication Foundation for Distributed and Decentralized Machine Learning
职业:为分布式和去中心化机器学习建立通信基础
- 批准号:
2143559 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
Matrix Decomposition for Scalable Conic Optimization with Applications to Distributed Control and Machine Learning
用于可扩展圆锥优化的矩阵分解及其在分布式控制和机器学习中的应用
- 批准号:
2154650 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Discovery Grants Program - Individual