An intellectual overlap of pure mathematics and engineering techniques targeted to develop self-reliant, efficient, and clean artificial intelligence processors

纯数学和工程技术的智力重叠,旨在开发自力更生、高效和清洁的人工智能处理器

基本信息

  • 批准号:
    577214-2022
  • 负责人:
  • 金额:
    $ 24.37万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Energy-consuming processors are widely used in rapidly developing powerful cloud-based computing and artificial intelligence (AI). AI's power consumption is enormously increased due to the rush in admiration of deep learning that processes huge amounts of data with very large mathematical models that can consist of hundreds of millions or even billions of parameters. It consumes a lot of energy and generates lots of CO2 emissions. According to MIT Technology Review, training deep-learning algorithms emits nearly five times as much emissions as the average American car throughout its entire life cycle, including manufacturing. An artificial intelligence system training to play chess can generate 192,000 pounds of CO2. If we do not reassess the current AI research agenda, AI could contribute to climate change in the years to come and significantly pollute the earth.The overarching goal of this proposal is to reduce the energy consumption of AI Data Centers (DCs) by optimizing every aspect of the procedure. The changes begin with computing hardware and software algorithms and extend to power sources. Our goal is to prepare DCs for smart data collection, processing, and learning applications. Healthcare and social sciences require new computing infrastructures and DCs to help professionals enhance the quality of these crucial aspects. We need to combine and broaden our knowledge and our achievements in power electronics, mathematics, deep learning, biomedical, social science, and chemical engineering to build high-efficiency self-reliant infrastructures for the AI DCs. To achieve this goal, we will focus on: i) powering AI DCs with clean and renewable energy sources; ii) optimizing the algorithms and data management methods to reduce energy consumption; iii) developing novel energy storage and power management infrastructure for AI DCs.
高耗能处理器被广泛应用于快速发展功能强大的云计算和人工智能(AI)。由于人们对深度学习的推崇,人工智能的能耗大幅增加。深度学习使用由数亿甚至数十亿个参数组成的非常大的数学模型来处理海量数据。它消耗大量能源,产生大量二氧化碳排放。根据《麻省理工学院技术评论》的数据,训练深度学习算法在包括制造在内的整个生命周期中排放的排放量几乎是普通美国汽车的五倍。一个训练下棋的人工智能系统可以产生19.2万磅的二氧化碳。如果我们不重新评估目前的人工智能研究议程,人工智能可能会在未来几年导致气候变化,并严重污染地球。这项提议的总体目标是通过优化程序的每个方面来降低人工智能数据中心(DC)的能源消耗。这些变化始于计算硬件和软件算法,并延伸到电源。我们的目标是让DC为智能数据收集、处理和学习应用程序做好准备。医疗保健和社会科学需要新的计算基础设施和DC来帮助专业人员提高这些关键方面的质量。我们需要结合和拓宽我们在电力电子、数学、深度学习、生物医学、社会科学和化学工程方面的知识和成就,为人工智能DC建设高效自力更生的基础设施。为了实现这一目标,我们将专注于:i)用清洁和可再生能源为AI DC提供动力;ii)优化算法和数据管理方法,以降低能源消耗;iii)为AI DC开发新的能源存储和电源管理基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bakhshai, AlirezaA其他文献

Bakhshai, AlirezaA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Exploring the overlap between neurodevelopmental disorders and traits with adolescent hypomania
探索神经发育障碍和青少年轻躁狂特征之间的重叠
  • 批准号:
    2886920
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Studentship
The cardiovascular consequences of sleep apnea plus COPD (Overlap syndrome)
睡眠呼吸暂停加慢性阻塞性肺病(重叠综合征)对心血管的影响
  • 批准号:
    10733384
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
Domestic Abuse Proceedings In Family Courts: Overlap And Pathways In Private And Public Family Justice
家庭法院的家庭暴力诉讼:私人和公共家庭司法的重叠和途径
  • 批准号:
    ES/X011399/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Fellowship
Integrating Epidemiologic and Genomic Data to Elucidate the Genetic Overlap Between Congenital Anomalies and Pediatric Cancer
整合流行病学和基因组数据来阐明先天性异常和儿童癌症之间的遗传重叠
  • 批准号:
    10749761
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
The Changing Structure of the International Court of Justice: Overlap of Dispute Settlement and International Control
国际法院结构的变化:争端解决与国际控制的重叠
  • 批准号:
    23K01112
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The overlap of speech production and verbal working memory
言语产生和言语工作记忆的重叠
  • 批准号:
    10735031
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
Bilingual discourse comprehension: How is text integration affected by overlap in language?
双语话语理解:语言重叠如何影响文本整合?
  • 批准号:
    10629501
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
Comparing Overlap Between Existing Bilingualism Questionnaires: A Content Analysis Research Proposal
比较现有双语问卷之间的重叠:内容分析研究建议
  • 批准号:
    573665-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Efficient carrier transport in organic semiconductors through molecular orbital overlap engineering
通过分子轨道重叠工程实现有机​​半导体中的高效载流子传输
  • 批准号:
    22H01933
  • 财政年份:
    2022
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
'The Crime-Terror Nexus: Investigating the overlap between criminal and extremist practices, narratives and networks in Tripoli, Lebanon
“犯罪与恐怖的联系:调查黎巴嫩的黎波里犯罪和极端主义做法、叙述和网络之间的重叠
  • 批准号:
    ES/S009019/2
  • 财政年份:
    2022
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了