Approximate Computing for Low-Power Many-Core Processors

低功耗众核处理器的近似计算

基本信息

  • 批准号:
    RGPIN-2018-03854
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Developing more efficient computing systems is a critical goal of the high-tech industry. To this end, designers have suggested hardware (i.e., energy efficient components and systems) and software methods (compiler solutions for generating energy efficient code). Developing efficient computing systems not only has resulted in environmental benefits, but has also helped reducing production cost and complexity and achieving longer battery lives. Recent studies however, have shown that the same level of efficiency is not sustainable and that further achievements in developing low-power solutions face difficulties imposed not only by technology limitations but also application requirements.Traditionally, applications running on computing systems have required intact accuracy. In recent years many studies have analyzed computing at the application level and have shown that many applications can tolerate an acceptable level of inaccuracy and approximation in their computations.Approximate computing builds on this observation and is a promising solution to maintaining energy efficiency in the future. Conventional low-power design explored a two dimensional space where trade-offs between power and performance were explored with the goal of maximising energy savings while maintaining performance. With the inclusion of approximation, this design space has been extended to a three dimensional one where accuracy can also be traded for higher efficiency. This extension motivates us to pursue new opportunities and further optimizations. This research will deliver new ways to explore and build approximate-aware systems relying on a less aggressive approach to computing but still capable of delivering acceptable results.We propose a deep analysis of General Purpose Graphic Processing Units (GPGPUs) anddeveloping both hardware and software solutions to reduce energy consumption and improve efficiency while maintaining accuracy within acceptable limits. While our hardware solutions will focus on designing new and efficient Graphic Processing Units, our software solutions will use a compiler based approach to identify opportunities to achieve low-complexity computing. Our past experience with hardware and software optimizations, application behaviour analysis and our familiarity with the tools available provide us with the required skills to develop low-power approximate-aware systems.Our proposed research makes important contributions to the Canadian society. First, the proposed program aims at developing "greener" computing infrastructures where power hungry GPGPUs are replaced with low-power alternatives. Second, the resulting knowledge belongs to an area critical to Canada's future leadership in advanced technologies. Many Canadian companies can benefit from the findings of the proposed research and the resulting HQP training.
开发更高效的计算系统是高科技行业的关键目标。为此,设计者建议硬件(即,节能组件和系统)和软件方法(用于生成节能代码的编译器解决方案)。开发高效的计算系统不仅带来了环境效益,还有助于降低生产成本和复杂性,并延长电池寿命。然而,最近的研究表明,相同的效率水平是不可持续的,并且在开发低功耗解决方案方面的进一步成就不仅面临技术限制,而且还面临应用要求的困难。近年来,许多研究分析了应用级的计算,并表明许多应用程序可以容忍其计算中的可接受水平的不准确性和近似性。近似计算建立在这一观察的基础上,是一个有前途的解决方案,以保持能源效率在未来。传统的低功耗设计探索了一个二维空间,其中探索了功率和性能之间的权衡,目标是在保持性能的同时最大限度地节省能源。随着近似的加入,这种设计空间已经扩展到三维空间,在三维空间中,精度也可以换取更高的效率。这种扩展激励我们追求新的机会和进一步优化。这项研究将提供新的方法来探索和建立近似感知系统依赖于一个不那么激进的方法来计算,但仍然能够提供可接受的结果。我们提出了一个深入的分析通用图形处理单元(GPGPU)和开发硬件和软件解决方案,以减少能源消耗,提高效率,同时保持在可接受的范围内的准确性。虽然我们的硬件解决方案将专注于设计新的高效图形处理单元,但我们的软件解决方案将使用基于编译器的方法来识别实现低复杂度计算的机会。我们过去在硬件和软件优化、应用程序行为分析方面的经验以及对可用工具的熟悉为我们提供了开发低功耗近似感知系统所需的技能。我们拟议的研究为加拿大社会做出了重要贡献。首先,该计划旨在开发“更环保”的计算基础设施,用低功耗的替代品取代耗电的GPGPU。其次,由此产生的知识属于加拿大未来在先进技术方面的领导地位的关键领域。许多加拿大公司可以从拟议的研究结果和由此产生的HQP培训中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baniasadi, Amirali其他文献

Baniasadi, Amirali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baniasadi, Amirali', 18)}}的其他基金

Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
  • 批准号:
    RGPIN-2018-03854
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
  • 批准号:
    RGPIN-2018-03854
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
  • 批准号:
    RGPIN-2018-03854
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate Computing for Low-Power Many-Core Processors
低功耗众核处理器的近似计算
  • 批准号:
    RGPIN-2018-03854
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Storage saving using CNNs**********
使用 CNN 节省存储************
  • 批准号:
    536854-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Power-Aware Multicore Processing
功耗感知多核处理
  • 批准号:
    261369-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Power-Aware Multicore Processing
功耗感知多核处理
  • 批准号:
    261369-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning collaboration
机器学习协作
  • 批准号:
    502249-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Connect Grants Level 1
Genome Sequencing Collaboration
基因组测序合作
  • 批准号:
    489102-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Interaction Grants Program
Power-Aware Multicore Processing
功耗感知多核处理
  • 批准号:
    261369-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

RII Track-4:NSF: Synthesis of Oxide Ferroelectric Rashba Semiconductors for Low Power Computing
RII Track-4:NSF:用于低功耗计算的氧化物铁电 Rashba 半导体的合成
  • 批准号:
    2327352
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Community, Identity, and Competence: Supporting Low-Income Students in Computing and the Data Sciences at the University of Connecticut
社区、身份和能力:支持康涅狄格大学计算机和数据科学领域的低收入学生
  • 批准号:
    2322495
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
  • 批准号:
    2329111
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
  • 批准号:
    10072308
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant for R&D
Towards Quantum Computing With A Low Overhead
迈向低开销的量子计算
  • 批准号:
    547042-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
CAREER: Achieving Ultra-Low Latency under Heterogeneity and Uncertainty in Edge Computing
职业:在边缘计算的异构性和不确定性下实现超低延迟
  • 批准号:
    2145713
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Low Temperature Embedded Memory Devices for Near-Memory and In-Memory Computing
用于近内存和内存计算的低温嵌入式存储器件
  • 批准号:
    2218604
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Enabling Low-Latency and Secure Services in Mobile Edge Computing for Internet of Things
在物联网移动边缘计算中实现低延迟和安全服务
  • 批准号:
    569264-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Planning for Resilient Low-Carbon Energy Systems with High-Performance Computing
规划具有高性能计算的弹性低碳能源系统
  • 批准号:
    532527-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了