A computational framework to unravel gene regulatory mechanisms using single-cell omics data
使用单细胞组学数据揭示基因调控机制的计算框架
基本信息
- 批准号:RGPIN-2019-04460
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Identifying transcriptional regulatory mechanisms related to a specific context or a phenotypic outcome is an important biological problem. The transcriptional regulatory networks (TRNs), which represent the regulatory effects of transcription factors on the genes, have proven to be a useful model for describing gene expression programs in different biological contexts. TRNs are usually constructed computationally from bulk gene expression data across many samples, alone or in combination with other data types. However, since bulk omic datasets represent the 'average' profile of 'all' the cells in a sample, TRNs reconstructed based on these data types have limited value to study processes whose effects are best observed at a single cell resolution or scenarios in which samples contain heterogeneous cells. Consequently, the study of these processes and their TRNs should be performed using single-cell omics profiles of only cells involved in these processes. However, current methods for TRN reconstruction using single-cell data are usually counterparts of methods based on bulk data, and as such ignore challenges and opportunities that exist when using data from these new technologies. Moreover, these methods are agnostic to the phenotypic labels of different samples and cannot identify regulatory mechanisms that are responsible for the variation in a phenotype of interest. My plan is to develop a unified computational framework that will allow reconstruction of causal TRNs, across different samples containing (potentially) heterogeneous cells, at a single-cell resolution using multiomics datasets, related to a specific biological phenotype. This computational framework will be constructed based on novel machine learning and graph mining algorithms, which we will develop. This framework and its computational tools, developed as part of my research program, will have a significant impact in the fields of bioinformatics and computational genome biology by providing advanced novel methods for identification of regulatory mechanisms responsible for variation in a phenotypic outcome. They will unravel new biological mechanisms and will identify novel biomarkers related to a phenotype. In addition, they may reveal new ways of manipulating the phenotypic properties of a biological system (e.g. a cell, a disease, an organism): for example to improve the resistance of crops to pests or to develop new treatments for neurodegenerative diseases or cancer. These tools, which will be implemented as user-friendly publicly available software, will also enable experimental biologists (the end users) to analyze their data, extract new insights from it, and identify novel targets for their experiments. Finally, my program will have a significant impact by training the next generation of computational biologists and bioinformaticians at various levels of undergraduate, graduate (Masters and PhD) and postdoctoral.
识别与特定环境或表型结果相关的转录调控机制是一个重要的生物学问题。转录调控网络(TRN)是描述转录因子对基因表达调控作用的有效模型,它可以描述不同生物学背景下的基因表达过程。TRN通常是从许多样本的大量基因表达数据中单独或与其他数据类型组合计算构建的。然而,由于批量组学数据集代表样本中“所有”细胞的“平均”分布,因此基于这些数据类型重建的TRN对于研究其效果在单个细胞分辨率或样本包含异质细胞的情况下最佳观察的过程具有有限的价值。因此,这些过程及其TRN的研究应该使用仅参与这些过程的细胞的单细胞组学特征来进行。 然而,目前使用单细胞数据进行TRN重建的方法通常是基于批量数据的方法的对应物,因此忽略了使用来自这些新技术的数据时存在的挑战和机遇。此外,这些方法对于不同样品的表型标记是不可知的,并且不能鉴定负责感兴趣的表型中的变化的调节机制。我的计划是开发一个统一的计算框架,该框架将允许使用与特定生物表型相关的多组学数据集以单细胞分辨率重建包含(潜在)异质细胞的不同样本的因果TRN。这个计算框架将基于我们将开发的新型机器学习和图挖掘算法构建。 这个框架和它的计算工具,作为我的研究计划的一部分,将有一个显着的影响,在生物信息学和计算基因组生物学领域,通过提供先进的新方法来识别负责变异的表型结果的调控机制。他们将揭示新的生物学机制,并将确定与表型相关的新生物标志物。此外,它们可能揭示操纵生物系统(例如细胞,疾病,生物体)表型特性的新方法:例如提高作物对害虫的抗性或开发神经退行性疾病或癌症的新疗法。这些工具将作为用户友好的公开软件实施,也将使实验生物学家(最终用户)能够分析他们的数据,从中提取新的见解,并为他们的实验确定新的目标。最后,我的计划将通过培养下一代计算生物学家和生物信息学家在本科,研究生(硕士和博士)和博士后的各个层次产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emad, Amin其他文献
Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform
- DOI:
10.1371/journal.pbio.3000583 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:9.8
- 作者:
Blatti, Charles, III;Emad, Amin;Sinha, Saurabh - 通讯作者:
Sinha, Saurabh
Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL.
- DOI:
10.1016/j.gpb.2023.01.006 - 发表时间:
2023-06 - 期刊:
- 影响因子:9.5
- 作者:
Hostallero, David Earl;Wei, Lixuan;Wang, Liewei;Cairns, Junmei;Emad, Amin - 通讯作者:
Emad, Amin
Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature
- DOI:
10.1186/s13058-020-01304-8 - 发表时间:
2020-07-08 - 期刊:
- 影响因子:7.4
- 作者:
Emad, Amin;Ray, Tania;Ray, Partha S. - 通讯作者:
Ray, Partha S.
A new correlation clustering method for cancer mutation analysis
- DOI:
10.1093/bioinformatics/btw546 - 发表时间:
2016-12-15 - 期刊:
- 影响因子:5.8
- 作者:
Hou, Jack P.;Emad, Amin;Milenkovic, Olgica - 通讯作者:
Milenkovic, Olgica
CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks
- DOI:
10.1371/journal.pone.0090781 - 发表时间:
2014-03-12 - 期刊:
- 影响因子:3.7
- 作者:
Emad, Amin;Milenkovic, Olgica - 通讯作者:
Milenkovic, Olgica
Emad, Amin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emad, Amin', 18)}}的其他基金
A computational framework to unravel gene regulatory mechanisms using single-cell omics data
使用单细胞组学数据揭示基因调控机制的计算框架
- 批准号:
RGPIN-2019-04460 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
A computational framework to unravel gene regulatory mechanisms using single-cell omics data
使用单细胞组学数据揭示基因调控机制的计算框架
- 批准号:
RGPIN-2019-04460 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
A computational framework to unravel gene regulatory mechanisms using single-cell omics data
使用单细胞组学数据揭示基因调控机制的计算框架
- 批准号:
DGECR-2019-00126 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
A computational framework to unravel gene regulatory mechanisms using single-cell omics data
使用单细胞组学数据揭示基因调控机制的计算框架
- 批准号:
RGPIN-2019-04460 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Syncronization for ultra-wide banwidth wireless systems
超宽带宽无线系统的同步
- 批准号:
392688-2010 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Syncronization for ultra-wide banwidth wireless systems
超宽带宽无线系统的同步
- 批准号:
392688-2010 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Syncronization for ultra-wide banwidth wireless systems
超宽带宽无线系统的同步
- 批准号:
392688-2010 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Syncronization for ultra-wide banwidth wireless systems
超宽带宽无线系统的同步
- 批准号:
392688-2010 - 财政年份:2010
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
SYNCHRONIZATION FOR ULTRA-WIDE BANDWITH WIRELESS SYSTEMS
超宽带无线系统的同步
- 批准号:
361484-2008 - 财政年份:2008
- 资助金额:
$ 2.19万 - 项目类别:
Postgraduate Scholarships - Master's
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant