Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
基本信息
- 批准号:RGPIN-2018-06222
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The number of connected devices is growing at an unprecedented rate, creating an explosion of Internet of Things (IoT) data that are moving among devices, storage, and processing locations. Data from sensors are typically transferred to the cloud for storage and analysis and then delivered to various software applications. For example, data from a smart home are transferred to a data centre possibly thousands of miles away and then back again for display on devices within the home. With data centre traffic already measured in zettabytes, attempting to transfer all IoT data to the cloud will strain communication networks and increase cost. Moreover, real-time systems, which are common in safety critical applications, cannot tolerate latencies caused by transfer to the cloud.To address these IoT challenges, the proposed research program will combine edge and cloud computing. Whereas cloud computing transfers data to the computing location, edge computing brings computation closer to the network edge where data are generated. Here, the term edge encompasses measuring devices (e.g., sensors, smart phones) and fog nodes, the resources close to data sources (e.g., gateways, local servers). Edge-cloud approaches will decrease network traffic and latencies, improve user experience, enable off-line operation, and reduce exposure to cloud-related security risks.The long term objective of this research program is to advance the field of IoT data analytics by extending it to edge computing. The short-term objectives include:1. Enabling Edge-Cloud IoT Data Analytics for Smart Cities will initiate work on edge-cloud analytics by adopting edge computing for specific smart city use cases such as energy management and sustainable buildings.2. Designing Resource Management Models to allocate and manage computation across diverse nodes of the edge-cloud environment to minimize response time and/or network traffic.3. Enabling IoT Interoperability to integrate data from diverse IoT devices and non-IoT data in support of novel data analytics methods and new software applications through edge computing.4. Designing IoT Edge-Cloud Data Management Methods that will distribute data storage over edge and cloud nodes to reduce network traffic and response time by storing or replicating data close to where they are produced (edge) or consumed (edge or cloud).The proposed research will enable new IoT applications and services that are currently not possible due to latencies or costs associated with data transfer to the cloud. Software applications will benefit through improved quality of service, ability to offload computation to nearby devices, and increased location awareness. Companies using IoT analytics will benefit through process optimization, insights discovery, and improved decision-making. This research program will contribute to Canadian leadership in this rapidly growing field.
互联设备的数量正以前所未有的速度增长,导致在设备、存储和处理位置之间移动的物联网(IoT)数据呈爆炸式增长。来自传感器的数据通常被传输到云中进行存储和分析,然后交付给各种软件应用程序。例如,来自智能家居的数据被传输到可能远在数千英里之外的数据中心,然后再返回到家中的设备上显示。由于数据中心流量已经以ZB计算,尝试将所有物联网数据传输到云将使通信网络紧张并增加成本。此外,安全关键应用中常见的实时系统无法容忍传输到云端带来的延迟。为了应对这些物联网挑战,提出的研究计划将结合边缘和云计算。云计算将数据传输到计算位置,而边缘计算使计算更接近生成数据的网络边缘。这里,术语边缘包括测量设备(例如,传感器、智能手机)和雾节点,即靠近数据源(例如,网关、本地服务器)的资源。边缘云方法将减少网络流量和延迟,改善用户体验,实现离线操作,并减少云相关安全风险的暴露。该研究计划的长期目标是通过将物联网数据分析领域扩展到边缘计算来推进该领域。短期目标包括:1.为智能城市启用边缘云物联网数据分析将通过为能源管理和可持续建筑等特定智能城市使用案例采用边缘计算来启动边缘云分析工作。设计资源管理模型,以跨边缘云环境的不同节点分配和管理计算,以最大限度地减少响应时间和/或网络流量。支持物联网互操作性,通过边缘计算集成来自不同物联网设备的数据和非物联网数据,以支持新的数据分析方法和新的软件应用。设计物联网边缘-云数据管理方法,将数据存储分布在边缘和云节点上,通过在靠近生产(边缘)或消费(边缘或云)的位置存储或复制数据来减少网络流量和响应时间。拟议的研究将支持新的物联网应用和服务,这些应用和服务目前因数据传输到云的延迟或成本而无法实现。软件应用程序将从改进的服务质量、将计算负载转移到附近设备的能力以及增强的位置感知中受益。使用物联网分析的公司将通过流程优化、洞察发现和改进决策而受益。这一研究计划将有助于加拿大在这一快速增长的领域发挥领导作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grolinger, Katarina其他文献
Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks
- DOI:
10.3390/en13010130 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.2
- 作者:
Fekri, Mohammad Navid;Ghosh, Ananda Mohon;Grolinger, Katarina - 通讯作者:
Grolinger, Katarina
Edge-Cloud Computing for Internet of Things Data Analytics: Embedding Intelligence in the Edge With Deep Learning
- DOI:
10.1109/tii.2020.3008711 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:12.3
- 作者:
Ghosh, Ananda Mohon;Grolinger, Katarina - 通讯作者:
Grolinger, Katarina
Energy Forecasting for Event Venues: Big Data and Prediction Accuracy
- DOI:
10.1016/j.enbuild.2015.12.010 - 发表时间:
2016-01-15 - 期刊:
- 影响因子:6.7
- 作者:
Grolinger, Katarina;L'Heureux, Alexandra;Seewald, Luke - 通讯作者:
Seewald, Luke
An ensemble learning framework for anomaly detection in building energy consumption
- DOI:
10.1016/j.enbuild.2017.02.058 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:6.7
- 作者:
Araya, Daniel B.;Grolinger, Katarina;Bitsuamlak, Girma - 通讯作者:
Bitsuamlak, Girma
Machine Learning With Big Data: Challenges and Approaches
- DOI:
10.1109/access.2017.2696365 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:3.9
- 作者:
L'Heureux, Alexandra;Grolinger, Katarina;Capretz, Miriam A. M. - 通讯作者:
Capretz, Miriam A. M.
Grolinger, Katarina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grolinger, Katarina', 18)}}的其他基金
Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
- 批准号:
RGPIN-2018-06222 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Data analytics for electric vehicle energy management
电动汽车能源管理的数据分析
- 批准号:
570760-2021 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
- 批准号:
RGPIN-2018-06222 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
- 批准号:
RGPIN-2018-06222 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
- 批准号:
RGPIN-2018-06222 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Edge-Cloud Computing for Internet of Things Data Analytics
用于物联网数据分析的边缘云计算
- 批准号:
DGECR-2018-00097 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Anomaly Detection for Advanced Metering Infrastructure
高级计量基础设施的异常检测
- 批准号:
519910-2017 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Decreasing the risk and the timeframe of legacy database application migration
降低遗留数据库应用程序迁移的风险和时间范围
- 批准号:
392470-2010 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Decreasing the risk and the timeframe of legacy database application migration
降低遗留数据库应用程序迁移的风险和时间范围
- 批准号:
392470-2010 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Decreasing the risk and the timeframe of legacy database application migration
降低遗留数据库应用程序迁移的风险和时间范围
- 批准号:
392470-2010 - 财政年份:2010
- 资助金额:
$ 2.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似海外基金
EAGER: SPRITE: Sensor Processing and Realtime Intelligence at The Edge - Supporting the National Discovery Cloud for Climate with Advanced Networking, Cloud, and Edge Computing
EAGER:SPRITE:边缘传感器处理和实时智能 - 通过先进的网络、云和边缘计算支持国家气候发现云
- 批准号:
2335335 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
CICI: UCSS: Trusted Resource Allocation in Volunteer Edge-Cloud Computing Workflows
CICI:UCSS:志愿者边缘云计算工作流程中的可信资源分配
- 批准号:
2232889 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
- 批准号:
2301884 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
- 批准号:
2228472 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Evaluation and Testing Framework for Cloud and Edge Computing Applications
云和边缘计算应用的评估和测试框架
- 批准号:
RGPIN-2020-04849 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
- 批准号:
2228470 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
CC* Data Storage: Supporting Big-Data Edge Computing using Hybrid and Cloud-Native Storage Infrastructure
CC* 数据存储:使用混合和云原生存储基础设施支持大数据边缘计算
- 批准号:
2232601 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
- 批准号:
RGPIN-2019-06120 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SAI-P: Public Multi-Access Edge Cloud (pMEC) as a Community-Based Distributed Computing Infrastructure for Emerging Real-Time Applications
合作研究:SAI-P:公共多路访问边缘云 (pMEC) 作为新兴实时应用的基于社区的分布式计算基础设施
- 批准号:
2228471 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Evaluation and Testing Framework for Cloud and Edge Computing Applications
云和边缘计算应用的评估和测试框架
- 批准号:
RGPIN-2020-04849 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual