Multimodal Learning-Driven Software Analysis
多模态学习驱动的软件分析
基本信息
- 批准号:RGPIN-2022-04523
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As software systems continue to take on ever more central roles in real--world production settings, their dependability has become increasingly critical. Software errors cost the global economy over $1 trillion per year and can cause devastating disruptions and human lives. Software developers spend around 50% of their work time finding and fixing software- related errors. This research program targets novel software analysis techniques for mitigating, detecting, and repairing errors automatically. We are at a pivotal point in which we can automatically learn patterns from massive amounts of digital data using deep learning. This enables us to tackle some of the recurring software engineering challenges, such as error detection and repair, by applying deep learning on data gathered from software developers in practice. Traditional automated error detection and program repair techniques rely on a set of predefined templates and rules that are limited to specific software error--types; adding support for a new type of error is manual, ad--hoc, and costly. Instead of hard--coding error detection and repair rules, we can automatically learn from the way developers make mistakes and repair those mistakes. The challenge here is how to best represent software systems for vectorization amenable to machine learning. Software analysis has traditionally revolved around the source code of the software. We propose to take a multimodal learning approach to error detection and repair in which in addition to the syntax and semantics of the software, its runtime behaviour is taken into account, through a combination of software analysis, computer vision, and machine learning algorithms. We will devise new techniques for textual and visual analysis of program execution traces and runtime visual artificants. This proposed program at the intersection of software analysis, deep learning, and computer vision will bolster our world- leading initiatives in automated error detection and repair and help further establish Canada as a leader in this important and timely research area. This line of work will have direct downstream benefits for businesses that adopt and apply machine learning-enabled software by enabling the detection and fixing of errors before deployment to real-world settings. We believe our multimodal learning approach will have a significant impact in devising more accurate software analysis techniques, not only for bug detection and repair, but for many related areas of software engineering where tasks can be automated by learning from examples.
随着软件系统继续在现实世界的生产环境中扮演越来越重要的角色,它们的可靠性变得越来越重要。软件错误每年给全球经济造成超过1万亿美元的损失,并可能造成毁灭性的破坏和人类生命。软件开发人员花费了大约50%的工作时间来查找和修复与软件相关的错误。该研究计划的目标是用于自动减轻、检测和修复错误的新型软件分析技术。我们正处于一个关键时刻,我们可以使用深度学习从海量数字数据中自动学习模式。这使我们能够通过在实践中对从软件开发人员那里收集的数据进行深入学习,来解决一些反复出现的软件工程挑战,例如错误检测和修复。传统的自动错误检测和程序修复技术依赖于一组预定义的模板和规则,这些模板和规则仅限于特定的软件错误类型;添加对新类型错误的支持是手动的、特别的和昂贵的。与硬编码错误检测和修复规则不同,我们可以自动从开发人员出错的方式中学习并修复这些错误。这里的挑战是如何最好地表示服从于机器学习的矢量化软件系统。软件分析传统上是围绕软件的源代码进行的。我们建议采用多模式学习方法来检测和修复错误,其中除了软件的语法和语义之外,通过结合软件分析、计算机视觉和机器学习算法来考虑软件的运行时行为。我们将设计新的技术来对程序执行轨迹和运行时可视化人工制品进行文本和视觉分析。这一结合了软件分析、深度学习和计算机视觉的拟议计划将支持我们在自动错误检测和修复方面的世界领先倡议,并有助于进一步确立加拿大在这一重要且及时的研究领域的领先地位。这项工作将为采用和应用支持机器学习的软件的企业带来直接的下游好处,因为它能够在部署到现实世界设置之前检测和修复错误。我们相信,我们的多模式学习方法将对设计更准确的软件分析技术产生重大影响,不仅适用于错误检测和修复,还适用于软件工程的许多相关领域,在这些领域,任务可以通过从示例中学习来实现自动化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mesbah, Ali其他文献
Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas
- DOI:
10.1088/1361-6463/ab1f3f - 发表时间:
2019-07-24 - 期刊:
- 影响因子:3.4
- 作者:
Mesbah, Ali;Graves, David B. - 通讯作者:
Graves, David B.
A control oriented study on the numerical solution of the population balance equation for crystallization processes
- DOI:
10.1016/j.ces.2009.06.060 - 发表时间:
2009-10-15 - 期刊:
- 影响因子:4.7
- 作者:
Mesbah, Ali;Kramer, Herman J. M.;Van den Hof, Paul M. J. - 通讯作者:
Van den Hof, Paul M. J.
Safe Learning-based Model Predictive Control under State- and Input-dependent Uncertainty using Scenario Trees
使用场景树在状态和输入相关的不确定性下基于安全学习的模型预测控制
- DOI:
10.1109/cdc42340.2020.9304310 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bonzanini, Angelo D.;Paulson, Joel A.;Mesbah, Ali - 通讯作者:
Mesbah, Ali
A Deep Learning Framework Discovers Compositional Order and Self-Assembly Pathways in Binary Colloidal Mixtures.
- DOI:
10.1021/jacsau.2c00111 - 发表时间:
2022-08-22 - 期刊:
- 影响因子:8
- 作者:
Mao, Runfang;O'Leary, Jared;Mesbah, Ali;Mittal, Jeetain - 通讯作者:
Mittal, Jeetain
Model Predictive Control of an Integrated Continuous Pharmaceutical Manufacturing Pilot Plant
- DOI:
10.1021/acs.oprd.7b00058 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Mesbah, Ali;Paulson, Joel A.;Braatz, Richard D. - 通讯作者:
Braatz, Richard D.
Mesbah, Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mesbah, Ali', 18)}}的其他基金
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
492966-2016 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
492966-2016 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
492966-2016 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Analyzing Tests for Correctness, Adequacy, and Effectiveness
分析测试的正确性、充分性和有效性
- 批准号:
RGPIN-2016-04615 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Towards thwarting cyber corporate espionage by predicting its victims
通过预测受害者来阻止网络企业间谍活动
- 批准号:
491607-2015 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
語彙学習のための大規模 Data-Driven Learning システム開発
开发大规模数据驱动的词汇学习系统
- 批准号:
23K21732 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CPS: Small: NSF-DST: Safety-Aware Behaviour-Driven Reinforcement Learning Based Autonomous Driving Solution for Urban Areas
CPS:小型:NSF-DST:基于安全意识行为驱动的强化学习的城市自动驾驶解决方案
- 批准号:
2343167 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant