Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions

通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性

基本信息

  • 批准号:
    RGPIN-2021-02968
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The welfare and security of modern societies rely on the safe and secure operation of complex safety-critical cyber-physical systems (CPSs). With advancement of digitalization in modern industries, nowadays, CPSs are applied in various technical areas including energy, automotive, medicine, industries, transportation, and defense. CPSs are defined as the close interaction and seamless combination of physical processes and cyber components. These cyber modules monitor, make decisions and control the physical components, and adapt themselves to changes in non-stationary environments. Safety and security are major concerns for the CPS operation due to the great potential for the occurrence of faults, the broad attack surface, and the severe consequences of attacks and faults. CPSs dependency on digitalization, wireless communication, and remote control systems increases their vulnerabilities to malicious threats and cyber-attacks, which lead to the loss of system integrity and functionality. These widen the range of possible problems that cannot be properly addressed, unless under a unified view of safety and security characteristics. To maintain a high level of performance, safety, and security in CPSs; abnormal system operations and anomalies including faults (safety-related incidents) as well as malicious threats and cyber-attacks (security-related incidents) must be detected quickly. Although cyber-attacks and faults originate from different sources, may have similar signatures, and result in increased operating costs, the chance of line shutdown, and the possibility of detrimental environmental impacts. Nevertheless, the source and severity of each must be identified, so that corrective actions can be taken promptly. Therefore, early detection and diagnosis of cyber-attacks and faults are strategically essential for companies to remain competitive in world markets. In addition, from the unified view of safety and security, classifying cyber-attacks from faults is of paramount importance for assessing their possible effects on the system integrity and choosing an appropriate set of preventive and recovery actions for resilience. Furthermore, many cyber-attacks and system malfunctions do not have only safety, security, or life-threatening consequences but may seriously affect the ecology. To enhance the system resiliency, it is crucial to integrate the knowledge on machine learning, big data analytics, cybernetics, cyber security, and safety, to address potential failures and malicious threats. The objective is to focus on missing principal knowledge in detection, diagnosis, and prognosis along with machine learning, big data analytics, and cybernetics that would pave the way together towards attack-resilient and fault-tolerant CPSs. Although the proposed research can be applied to a wide range of applications, the focus of this proposal is toward cyber-physical energy and power systems, with applications to modern power grids.
现代社会的福利和安全依赖于复杂的安全关键网络物理系统(cps)的安全可靠运行。随着现代工业数字化的推进,cps应用于能源、汽车、医药、工业、交通、国防等各个技术领域。cps被定义为物理过程和网络组件的紧密交互和无缝结合。这些网络模块监控、决策和控制物理组件,并使自己适应非固定环境的变化。CPS系统故障发生的可能性大,攻击面广,攻击和故障造成的后果严重,安全保障是CPS系统运行的主要问题。cps对数字化、无线通信和远程控制系统的依赖增加了其遭受恶意威胁和网络攻击的脆弱性,从而导致系统完整性和功能的丧失。这些扩大了可能出现的问题的范围,除非对安全和安保特征有统一的看法,否则这些问题无法得到妥善解决。维持cps的高水平性能、安全和保安;系统运行异常、异常,包括故障(安全事件)、恶意威胁和网络攻击(安全事件),需要快速发现。尽管网络攻击和故障来自不同的来源,但可能具有相似的特征,并导致运营成本增加,线路关闭的可能性增加,以及对环境造成不利影响的可能性。然而,必须确定每个问题的来源和严重程度,以便及时采取纠正措施。因此,早期发现和诊断网络攻击和故障对于公司在世界市场上保持竞争力至关重要。此外,从安全的统一观点来看,从故障中对网络攻击进行分类对于评估其对系统完整性的可能影响以及选择一套适当的预防和恢复措施以实现弹性至关重要。此外,许多网络攻击和系统故障不仅具有安全、安保或危及生命的后果,而且可能严重影响生态。为了增强系统的弹性,整合机器学习、大数据分析、控制论、网络安全和安全方面的知识,以解决潜在的故障和恶意威胁至关重要。目标是专注于缺失的检测、诊断和预测方面的主要知识,以及机器学习、大数据分析和控制论,这些知识将为抵御攻击和容错的cps铺平道路。虽然所提出的研究可以应用于广泛的应用,但本提案的重点是网络物理能源和电力系统,并应用于现代电网。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RazaviFar, Roozbeh其他文献

RazaviFar, Roozbeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RazaviFar, Roozbeh', 18)}}的其他基金

Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
  • 批准号:
    DGECR-2021-00284
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
  • 批准号:
    RGPIN-2021-02968
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划
制冷系统故障诊断关键问题的定量研究
  • 批准号:
    50876059
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Storage-Aware Fault Tolerance
职业:存储感知容错
  • 批准号:
    2339784
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Unlocking the potential of Quantum LDPC Codes for low-overhead fault-tolerance
释放量子 LDPC 码在低开销容错方面的潜力
  • 批准号:
    EP/Y004620/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
CRII: SaTC: RUI: When Logic Locking Meets Hardware Trojan Mitigation and Fault Tolerance
CRII:SaTC:RUI:当逻辑锁定遇到硬件木马缓解和容错时
  • 批准号:
    2245247
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Unlocking the potential of Quantum LDPC Codes for low-overhead fault-tolerance
释放量子 LDPC 码在低开销容错方面的潜力
  • 批准号:
    EP/Y004507/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Distributed Placement of Virtual Network Functions in Edge Networks
边缘网络中虚拟网络功能的分布式放置
  • 批准号:
    22KJ1685
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards resiliency through health monitoring, diagnosis, prognosis, and fault tolerance in complex and cyber-physical systems with applications to electrified and connected vehicles.
通过复杂网络物理系统的健康监测、诊断、预测和容错,并应用于电气化和互联车辆,实现弹性。
  • 批准号:
    RGPIN-2018-04002
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving fault-tolerance mechanisms in distributed data streaming systems
改进分布式数据流系统中的容错机制
  • 批准号:
    575699-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale
合作研究:SHF:小型:大规模学习容错
  • 批准号:
    2135309
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了