Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
基本信息
- 批准号:RGPIN-2020-05798
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology is accelerating, computing systems are becoming more powerful, and attackers are using sophisticated techniques and artificial intelligence. As a result, stronger security and cryptographic schemes with larger keys need to be implemented into smart devices and systems to protect sensitive data, computing systems, and network. The cryptographic systems are computationally complex and so their performance heavily relies on their efficient computations, specially in resource constrained embedded systems, such as smart cards, radio frequency identification tags, Internet of Things, and nodes in wireless sensor networks, where the power consumption, memory, and bandwidth are very limited. Efficient and reliable designs and implementations of cryptographic computations are challenging due to their complex nature. The main objective of this research is to propose novel computer arithmetic algorithms and architectures for cryptographic primitives and reliable security systems based on state of the art Advanced Encryption Standard (AES), the AES-GCM (Galois/counter mode) authenticated encryption, and Elliptic Curve Cryptography (ECC) as well as several submissions to the NIST lightweight cryptography standardization process. We are interested in devising the hardware implementations of such cryptographic systems for lightweight, low-power and high-speed target applications. We investigate the design of original algorithms and architectures for field arithmetic operations used in the AES, AES-GCM, and ECC cryptosystems. Choosing an appropriate field representation plays a critical role on the implementation performance of these cryptosystems. We consider different bases and representations to design the high-level and low-level arithmetic computations based on different design metrics. We investigate the effects of architectural design in terms of types of inputs and outputs (serial or parallel) and appropriate digit-level operations to find novel arithmetic algorithms/architectures with optimum digit sizes. Then, the optimum designs of the underlying arithmetic operations will be incorporated into the corresponding cryptosystems. Also, we design innovative reliable security systems to counteract natural faults and fault attacks. This research is very important for current and future technologies due to the increase in the density, clock frequency, and power dissipation per unit in very large scale integrated circuits. More importantly, fault attacks have become a serious concern in cryptography. This part of research will be based on adopting efficient concurrent error control coding approaches which has low overhead with acceptable error coverage. The outcome of this research leads to more secure and reliable cryptographic and security systems with lower cost and higher performance. It will also contribute to training highly qualified personnel for academia and Canadian industry.
技术正在加速发展,计算系统变得越来越强大,攻击者正在使用复杂的技术和人工智能。因此,需要在智能设备和系统中实现具有更大密钥的更强安全性和加密方案,以保护敏感数据、计算系统和网络。 密码系统在计算上是复杂的,因此它们的性能严重依赖于它们的有效计算,特别是在资源受限的嵌入式系统中,例如智能卡、射频识别标签、物联网和无线传感器网络中的节点,其中功耗、存储器和带宽非常有限。 由于密码计算的复杂性,其有效和可靠的设计和实现具有挑战性。本研究的主要目的是提出新的计算机算法和架构的基础上,最先进的高级加密标准(AES),AES-GCM(伽罗瓦/计数器模式)认证加密,椭圆曲线密码(ECC),以及几个提交给NIST轻量级密码标准化过程的加密原语和可靠的安全系统。我们有兴趣设计这样的密码系统的硬件实现轻量级,低功耗和高速的目标应用程序。我们调查的AES,AES-GCM和ECC密码系统中使用的域算术运算的原始算法和架构的设计。选择合适的域表示对这些密码系统的实现性能起着至关重要的作用。我们考虑不同的基础和表示设计的高层次和低层次的算术计算基于不同的设计指标。我们调查的输入和输出(串行或并行)和适当的数字级操作的类型方面的架构设计的影响,找到新的算术算法/架构与最佳的数字大小。然后,底层算术运算的优化设计将被纳入相应的密码系统。 此外,我们设计了创新的可靠的安全系统,以抵御自然故障和故障攻击。由于超大规模集成电路的密度、时钟频率和单位功耗的增加,这项研究对当前和未来的技术非常重要。更重要的是,错误攻击已经成为密码学中的一个严重问题。这部分的研究将基于采用有效的并发错误控制编码方法,具有较低的开销和可接受的错误覆盖率。 这项研究的结果导致更安全和可靠的密码和安全系统,成本更低,性能更高。它还将有助于为学术界和加拿大工业界培训高素质的人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ReyhaniMasoleh, Arash其他文献
ReyhaniMasoleh, Arash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ReyhaniMasoleh, Arash', 18)}}的其他基金
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
- 批准号:
RGPIN-2020-05798 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
478096-2015 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and reliable computations for lightweight and/or high-performance cryptosystems: algorithms, architectures, designs and implementations
轻量级和/或高性能密码系统的高效可靠计算:算法、架构、设计和实现
- 批准号:
RGPIN-2015-04899 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
- 批准号:
2402436 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant














{{item.name}}会员




