Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles

电动汽车驱动电机的实时状态监测与故障诊断

基本信息

  • 批准号:
    RGPIN-2020-06299
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research program aims to accomplish real-time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles (EV). Propulsion motor is a critical component of electric vehicle be it ground electric vehicle such as electric car, electric bus etc. or seaborne electric vehicle such as electric boat, ferry etc. or air borne electric vehicle such as manned and unmanned aerial vehicle. Any unexpected failure of propulsion motor in an EV would affect the users as well as the manufacturers of the EV. For the users, an unexpected failure of propulsion motor could be as small as the inconvenience of EV not working or could be as big as a catastrophic accident. For an EV manufacturer, frequent and abrupt failure of propulsion motors would severely dent one's brand image and hence drive away prospective customers. Furthermore, repair and replacement costs might be quite high. Therefore, it is vital to have a technology that would monitor the condition of the propulsion motor in real-time and warn about faults at an incipient stage. There are many different types of faults that can occur in a propulsion motor. Moreover, each fault propagates at different rates and afflicts the performance of a propulsion motor to different extent. Thus, the fault detection system should be able to segregate the fault type and estimate the severity of each fault. Furthermore, propulsion motor has numerous designs based on power rating, performance, space, cost, operating conditions etc. of an electric transportation system. Consequently, the condition monitoring and fault diagnostic scheme should be able to accommodate these design variations without compromising on reliability. The proposed research program intends to develop such a comprehensive condition monitoring and fault diagnostic scheme that would cater to the full spectrum of electric transportation systems. The research would adopt a mathematical model based approach (a) to study the impact of different types and severities of internal faults on the performance of propulsion motors, (b) to analyze the impact of variations in propulsion motor design parameters like air-gap length, rotor type, slotting and winding arrangement etc. on fault identification and segregation schemes, and (c) to train and develop an artificial intelligence based real-time condition monitoring and fault detection system. The research program's outcomes will have a significant bearing on accelerating electric transportation systems to market. Additionally, the research program will generate highly skilled HQPs to meet the demands of electric transportation sector. Finally, the proposal will allow a world class program in condition monitoring and fault diagnosis of propulsion motors to be developed in Canada at the University of Victoria that are currently lacking in other Canadian universities.
该研究计划旨在实现电动汽车(EV)中使用的推进电机的实时状态监测和故障诊断。推进电机是电动车辆的关键部件,无论是地面电动车辆如电动汽车、电动公共汽车等,还是海上电动车辆如电动船、渡轮等,还是空中电动车辆如有人驾驶和无人驾驶飞行器。电动汽车的推进电机发生任何意外故障都会影响电动汽车的使用者和制造商。对于用户来说,推进电机的意外故障可能小到电动汽车无法工作的不便,也可能大到灾难性事故。对于电动汽车制造商来说,频繁和突然的驱动电机故障会严重损害品牌形象,从而赶走潜在客户。此外,修理和更换费用可能相当高。因此,拥有一种能够实时监控推进电机状况并在早期阶段警告故障的技术至关重要。在推进电机中可能发生许多不同类型的故障。此外,每个故障以不同的速率传播,并在不同程度上影响推进电机的性能。因此,故障检测系统应该能够分离故障类型并估计每个故障的严重性。此外,推进电机具有基于电动运输系统的额定功率、性能、空间、成本、操作条件等的多种设计。因此,状态监测和故障诊断方案应该能够适应这些设计变化,而不损害可靠性。拟议的研究计划旨在开发这样一个全面的状态监测和故障诊断方案,以满足电力运输系统的全方位需求。研究将采用基于数学模型的方法(a)研究不同类型和严重程度的内部故障对推进电机性能的影响,(B)分析推进电机设计参数如气隙长度、转子类型、开槽和绕组布置等的变化对故障识别和隔离方案的影响,以及(c)训练和开发基于人工智能的实时状态监测和故障检测系统。该研究项目的成果将对加速电动交通系统推向市场产生重大影响。此外,该研究计划将产生高技能的HQP,以满足电力运输部门的需求。最后,该提案将允许在加拿大维多利亚大学开发一个世界级的推进电机状态监测和故障诊断项目,这是目前加拿大其他大学所缺乏的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ThirumaraiChelvan, Ilamparithi其他文献

ThirumaraiChelvan, Ilamparithi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ThirumaraiChelvan, Ilamparithi', 18)}}的其他基金

Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    RGPIN-2020-06299
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    DGECR-2020-00446
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    RGPIN-2020-06299
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
  • 批准号:
    10527735
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
  • 批准号:
    10704743
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
  • 批准号:
    10518136
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
A Feasibility study to determine the commercial and technical viability of a condition monitoring system that captures availability/utilization data of EV charging infrastructure in real time.
一项可行性研究,旨在确定状态监测系统的商业和技术可行性,该系统可实时捕获电动汽车充电基础设施的可用性/利用率数据。
  • 批准号:
    10046265
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant for R&D
Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
  • 批准号:
    10679093
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Research on technology to measure the condition of a wide range of river embankments and river beds in three dimensions in real time and with high accuracy
大范围河堤河床三维实时高精度测量技术研究
  • 批准号:
    22K04653
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    RGPIN-2020-06299
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    DGECR-2020-00446
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Real Time Smart Remote Wireless Condition Monitoring System
实时智能远程无线状态监测系统
  • 批准号:
    73141
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Feasibility Studies
Real time condition monitoring and fault diagnosis of propulsion motors used in electric vehicles
电动汽车驱动电机的实时状态监测与故障诊断
  • 批准号:
    RGPIN-2020-06299
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了