Deep Learning and Interpretability in Digital Image Forensics
数字图像取证中的深度学习和可解释性
基本信息
- 批准号:RGPIN-2022-03049
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the new AI era (or equivalently in the "Fake News" era), seeing will no longer be believing and even truth will not be believed. Ensuring integrity and authenticity of digital images is increasingly challenging and vital. With advanced image editing tools and deep learning (DL) models, people can easily manipulate digital images or generate highly visually convincing fake images and videos, including the infamous DeepFakes, and therefore pose critical challenges in digital image forensics (DIF) analysis. DIF analysis identifies the existence, lack or inconsistency of subtle, perceptually invisible forensic traces in a digital image to validate its origin, integrity and authenticity. Deep learning has been widely employed for DIF tasks. Unfortunately, both digital images and deep learning models are vulnerable to manipulations and attacks, intentionally or unintentionally. Adversarial examples, which an attacker has intentionally designed by adding specific human imperceptible perturbations into clean images, can easily fool a DL model to make a mistake. Particularly with the "black box" nature of current DL models, DL opportunities come with "big challenges" associated with DIF. The nature and scope of the DIF field has rendered deep learning interpretability increasingly critical. With this vision, this proposed research program will focus on exploring the intersection of digital image forensics and deep learning to eventually ensure trusting images and achieve more trusting DL solutions. More specifically, the proposed research program will pursue the following main technical objectives: (a) Exploring deep learning interpretability in digital image forensics: We aim to establish the evaluation benchmark and develop novel interpretability models for both conventional image forensics problems and adversarial deep learning problems; (b) Developing interpretation-incorporated deep learning frameworks for the general-purpose DIF analysis (e.g., simultaneous detection of different image manipulations and attacks); and (c) Developing adversary deep learning approaches to provide model-agnostic adversarial attacks and attack-agnostic adversarial defenses. The proposed research addresses fundamental challenges in digital image security and forensics -- the vulnerability of digital images and deep learning models, and has the potential to make influential contributions in achieving more trusting DL solutions for trusting images. Our expected improvements in the ability to combat fake contents and attacks will be of great benefit to society, privacy and national security. DL is reshaping many industries and revolutionizing many research fields, and our research will help achieve the full vision of trusting DL one tiny step further. The research program will provide an opportunity for the students to be trained in related cutting-edge technologies.
在新的人工智能时代(或相当于在“假新闻”时代),看到的将不再是相信的,甚至真理也不会被相信。确保数字图像的完整性和真实性越来越具有挑战性和重要性。借助先进的图像编辑工具和深度学习(DL)模型,人们可以轻松地操纵数字图像或生成视觉上高度可信的虚假图像和视频,包括臭名昭著的DeepFakes,因此对数字图像取证(DIF)分析提出了严峻的挑战。DIF分析识别数字图像中微妙的、感知上不可见的取证痕迹的存在、缺乏或不一致,以验证其来源、完整性和真实性。 深度学习已被广泛用于DIF任务。不幸的是,数字图像和深度学习模型都容易受到有意或无意的操纵和攻击。攻击者通过在干净的图像中添加特定的人类不可感知的扰动来故意设计对抗性示例,可以很容易地欺骗DL模型犯错误。特别是由于当前DL模型的“黑匣子”性质,DL机会伴随着与DIF相关的“巨大挑战”。DIF领域的性质和范围使得深度学习的可解释性变得越来越重要。有了这个愿景,这个拟议的研究计划将专注于探索数字图像取证和深度学习的交叉点,以最终确保可信的图像,并实现更可信的深度学习解决方案。 更具体地说,拟议的研究计划将追求以下主要技术目标:(a)探索数字图像取证中的深度学习可解释性:我们的目标是建立评估基准,并为传统图像取证问题和对抗性深度学习问题开发新的可解释性模型;(B)为通用DIF分析开发结合解释的深度学习框架(例如,同时检测不同的图像操作和攻击);以及(c)开发对抗深度学习方法,以提供模型不可知的对抗攻击和攻击不可知的对抗防御。 拟议的研究解决了数字图像安全和取证方面的根本挑战-数字图像和深度学习模型的脆弱性,并有可能在实现更可信的DL解决方案方面做出有影响力的贡献。我们预期的打击虚假内容和攻击能力的改进将对社会、隐私和国家安全大有裨益。DL正在重塑许多行业,并彻底改变许多研究领域,我们的研究将有助于实现信任DL的完整愿景。该研究计划将为学生提供相关尖端技术培训的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, ZJane其他文献
Wang, ZJane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, ZJane', 18)}}的其他基金
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
507965-2017 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
507965-2017 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Deep learning for digital image forensics
数字图像取证的深度学习
- 批准号:
522167-2017 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Engage Grants Program
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Statistical signal processing for non- invasive neurological data
非侵入性神经数据的统计信号处理
- 批准号:
312490-2011 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Training-less non-intrusive load monitoring system for understanding residential energy use
无需培训的非侵入式负载监控系统,用于了解住宅能源使用情况
- 批准号:
501582-2016 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-Contact Sleep Stage Estimation: Machine Learning in Multi-Imbalance Data for Improvements in Accuracy and Interpretability
非接触式睡眠阶段估计:多重不平衡数据中的机器学习,以提高准确性和可解释性
- 批准号:
22KJ1367 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models
CRII:III:追求功利在线学习模式的可解释性
- 批准号:
2245946 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Interpretability for Machine Learning
机器学习的可解释性
- 批准号:
CRC-2019-00383 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Interpretability and Fairness in Deep Learning for Computer-Aided Diagnosis
计算机辅助诊断深度学习的可解释性和公平性
- 批准号:
575945-2022 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
协作研究:机器学习辅助建模和具有通用性和可解释性的近似计算设计
- 批准号:
2202310 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
- 批准号:
2145346 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
具有通用性和可解释性的机器学习辅助建模和近似计算设计
- 批准号:
2202329 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Career: Building Models that Avoid Spurious Correlations through Interpretability and Representation Learning
职业:通过可解释性和表示学习构建避免虚假相关性的模型
- 批准号:
2145542 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Physics-informed Machine Learning Modelling for Multi-scale Building Energy Systems with Enhanced Accuracy and Interpretability
具有更高准确性和可解释性的多尺度建筑能源系统的基于物理的机器学习建模
- 批准号:
2725680 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Studentship