AI-augmented intelligent RFICs for transmitter predistortion for 5G and 6G wireless and space communication applications

用于 5G 和 6G 无线和空间通信应用的发射机预失真的 AI 增强型智能 RFIC

基本信息

  • 批准号:
    571671-2021
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Signal bandwidths have been increasing five times in every generation from 2G, reaching 100 MHz in 5G. Digital Predistortion (DPD) techniques were introduced in 3G and have been used since to reduce the impairments in RF front-ends, allowing the use of more energy efficient components and modes of operation at the cost of additional computation in baseband. As a result, the energy consumption of 3G base stations were reduced by up to 10%.In current DPD technology, the signal processing and transmitter components operate at few times the signal bandwidth to carry the correction information along with the signal information to the RF front-end. With wider signal bandwidths, 5G DPD processing complexity and energy consumption have increased to a point that offsets the energy efficiency gains in the RF frontend. Moreover, a full receiver is needed to monitor the RF front-end and adapt to its behavioural changes. This baseband-RF-baseband loop is complex, expensive, and slow in following the system changes. With the use of beamforming techniques, 5G+ Front-ends operating conditions vary rapidly and current DPD technology is unable to track these fast changes.This project aims to design an artificial intelligence (AI)-augmented RFIC predistorted front-end with the ability to quickly adapt to changes in the RF front-end environment and operating conditions. By including sensors to monitor the RF front-end environmental and operating conditions changes, and an AI engine to adapt the predistorter to these changes, the proposed solution will reduce the signal processing complexity, energy consumption, and latency. This solution would be the first truly intelligent RF system that is aware of its environment and able to adapt to changes. A proof-of-concept RFIC will be designed using state-of-the-art Gallium Nitride (GaN) nano technology and fabricated in world-leading nanofab facilities.
从2G到5G,信号带宽每一代增加5倍,达到100mhz。数字预失真(DPD)技术是在3G时代引入的,并一直用于减少射频前端的损害,允许使用更节能的组件和操作模式,但代价是基带的额外计算。因此,3G基站的能耗降低了10%。在目前的DPD技术中,信号处理和发射组件以几倍于信号带宽的速度工作,将校正信息与信号信息一起携带到射频前端。随着信号带宽的增加,5G DPD处理的复杂性和能耗已经增加到一定程度,抵消了射频前端的能效增益。此外,需要一个完整的接收器来监测射频前端并适应其行为变化。这种基带-射频-基带环路复杂、昂贵,且随系统变化缓慢。随着波束形成技术的使用,5G+前端运行条件变化迅速,目前的DPD技术无法跟踪这些快速变化。该项目旨在设计一种人工智能(AI)增强的RFIC预失真前端,能够快速适应RF前端环境和操作条件的变化。通过包括传感器来监测射频前端环境和操作条件的变化,以及人工智能引擎来调整预失真器以适应这些变化,所提出的解决方案将降低信号处理的复杂性、能耗和延迟。该解决方案将是第一个真正的智能射频系统,能够意识到其环境并能够适应变化。概念验证RFIC将采用最先进的氮化镓(GaN)纳米技术设计,并在世界领先的纳米工厂设施中制造。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helaoui, MohamedM其他文献

Helaoui, MohamedM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CISE-MSI: DP: CNS: AI-powered Diagnosis Augmented by Self-sustaining Sensing System for Intelligent Wastewater Infrastructure Management
CISE-MSI:DP:CNS:通过自我维持传感系统增强人工智能诊断,实现智能废水基础设施管理
  • 批准号:
    2318641
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Virtual Reality Train the Trainer (VRT3)
虚拟现实培训师 (VRT3)
  • 批准号:
    10602916
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
Integrated Human-Augmented Robotics and Intelligent Sensing Platform for Precision Viticulture
用于精准葡萄栽培的集成人类增强机器人和智能传感平台
  • 批准号:
    10074371
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative R&D
III: Small: Intelligent Scientific Text Analytics with Knowledge-Augmented Abductive Reasoning
III:小:具有知识增强归纳推理的智能科学文本分析
  • 批准号:
    2234058
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Artificial Intelligent Augmented Reality Police E-Trainer for Culturally Competent De-Escalation and Non-Lethal Force Police Training to Eradicate Police Violence Against Black Males
人工智能增强现实警察电子培训器,用于文化能力降级和非致命武力警察培训,以消除警察针对黑人男性的暴力行为
  • 批准号:
    10601754
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
AI-augmented intelligent RFICs for transmitter predistortion for 5G and 6G wireless and space communication applications
用于 5G 和 6G 无线和空间通信应用的发射机预失真的 AI 增强型智能 RFIC
  • 批准号:
    571671-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
  • 批准号:
    10371943
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
Deep Learning Augmented Intelligent Grinding Mill Simulation and Design
深度学习增强智能磨机仿真与设计
  • 批准号:
    LP190100378
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Linkage Projects
Intelligent simulated environments for augmented reality surgical training
用于增强现实手术训练的智能模拟环境
  • 批准号:
    534585-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了