Real-time imaging of light-induced transformations in phase-change materials
相变材料中光诱导转变的实时成像
基本信息
- 批准号:RGPIN-2021-03797
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this digital age, we rely on computers in many aspects of our daily life. Their performance not only influences how we communicate and work, but also the efficacy of our banks and medical care. It is then in the best interest of Canada to invest in their development to maintain a strategic advantage in this sector. This Discovery Grant (DG) contributes to this goal by studying the dynamics of phase-change materials that are important for computer memory devices and have the potential to enable more efficient computer architectures. Today's computers follow a von Neumann architecture, where data must be moved between physically separate processing and memory units. As the speed of processors has outpaced that of memory, the bottle neck is now the time it takes to shuttle data back and forth. This can be overcome by performing both actions in a single device, referred to as in-memory computing. However, practical realization of such devices requires materials that can both rapidly and irreversibly switch between states for combined fast processing and non-volatile memory functionality. Phase-change materials based on chalcogenide alloys have been largely investigated for this purpose, and are already used in the computer industry for optical data storage - the composition Ge2Sb2Te5 is used in DVDs, and Ge8Sb2Te11 is used in Blue-ray disks. Data can be written in these devices using a laser or electric current to locally heat a small region, and switch it between an insulating amorphous glass phase and a conductive crystalline phase. The resultant phase is determined by the amount of heat absorbed in the process that is controlled by the incident laser power or electric current. However, the maximum data writing speed is currently limited by the amorphous to crystalline phase transformation time. It is then the goal of this DG to explore ways to increase this transformation speed and track the corresponding material structural evolution in real time using the dynamic transmission electron microscope (DTEM) at INRS. This unique microscope has the capability to capture a sequence of nanosecond images of irreversible transformations with near-atomic resolution. Specifically, this DG will address critical outstanding questions about the crystallization of phase-change materials by exploring the following research directives: (1) imaging rapidly cooled transformations, (2) tracking precursors in the amorphous phase, and (3) ultra-localized nano-plasmonic heating. This research is expected to lead to a deeper understanding of this technologically important transformation, which can impact the future design of computers. Furthermore, the expertise gained by highly qualified personnel trained in this program is widely transferable to other sectors of the Canadian technology industry.
在这个数字时代,我们在日常生活的许多方面都依赖于计算机。他们的表现不仅影响我们的沟通和工作方式,也影响我们银行和医疗保健的效率。因此,投资于他们的发展以保持在该部门的战略优势符合加拿大的最佳利益。这项发现补助金(DG)通过研究相变材料的动力学来实现这一目标,这些材料对计算机存储设备非常重要,并有可能实现更高效的计算机架构。今天的计算机遵循冯·诺依曼架构,其中数据必须在物理上分离的处理和存储单元之间移动。由于处理器的速度已经超过了内存,现在的瓶颈是来回穿梭数据所需的时间。这可以通过在单个设备中执行两个操作来克服,称为内存计算。然而,这种器件的实际实现需要能够在状态之间快速且不可逆地切换的材料,以用于组合的快速处理和非易失性存储器功能。基于硫属化物合金的相变材料已经被大量研究用于此目的,并且已经用于计算机工业中的光学数据存储-组成Ge 2Sb 2 Te 5用于DVD,Ge 8 Sb 2 Te 11用于蓝光光盘。可以使用激光或电流将数据写入这些设备中,以局部加热一个小区域,并在绝缘非晶玻璃相和导电结晶相之间切换。所得到的相位由在由入射激光功率或电流控制的过程中吸收的热量确定。然而,最大数据写入速度目前受到非晶到结晶相变时间的限制。 然后,该DG的目标是探索提高这种转变速度的方法,并使用INRS的动态透射电子显微镜(DTEM)在真实的时间内跟踪相应的材料结构演变。这种独特的显微镜有能力捕捉一系列纳秒级图像的不可逆转变与近原子的分辨率。具体而言,该DG将通过探索以下研究方向来解决有关相变材料结晶的关键突出问题:(1)成像快速冷却的转变,(2)跟踪非晶相中的前体,以及(3)超局部纳米等离子体加热。这项研究有望加深对这一技术上重要的转变的理解,这可能会影响未来的计算机设计。此外,在该计划中培训的高素质人员所获得的专业知识可广泛转移到加拿大技术行业的其他部门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beyerlein, Kenneth其他文献
Beyerlein, Kenneth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beyerlein, Kenneth', 18)}}的其他基金
Real-time imaging of light-induced transformations in phase-change materials
相变材料中光诱导转变的实时成像
- 批准号:
RGPIN-2021-03797 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Real-time imaging of light-induced transformations in phase-change materials
相变材料中光诱导转变的实时成像
- 批准号:
DGECR-2021-00365 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time molecular-imaging guidance of breast conserving surgery
实时分子影像指导保乳手术
- 批准号:
478297 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Operating Grants
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Targeting adolescent depression symptoms using network-based real-time fMRI neurofeedback and mindfulness meditation
使用基于网络的实时功能磁共振成像神经反馈和正念冥想针对青少年抑郁症状
- 批准号:
10581837 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Real Time Metabolic Imaging to Interrogate Early Detection and Prevention of Pancreatic Cancer
实时代谢成像探讨胰腺癌的早期检测和预防
- 批准号:
10744576 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Event networks and the neural representations that support real-world memory
支持现实世界记忆的事件网络和神经表征
- 批准号:
10717508 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Real-time structural and functional studies of SARS-CoV-2 spike proteins
SARS-CoV-2 刺突蛋白的实时结构和功能研究
- 批准号:
10715467 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Japan-Germany collaborative research toward simultaneous real-time imaging of cancer pathology and radiotherapy effects
日德合作研究癌症病理和放射治疗效果同步实时成像
- 批准号:
23KK0206 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别: